Search Results

Documents authored by Kreylos, Oliver


Document
Construction of Implicit Surfaces from Point Clouds Using a Feature-based Approach

Authors: Patric Keller, Oliver Kreylos, Eric S. Cowgill, Louise H. Kellogg, and Martin Hering-Bertram

Published in: Dagstuhl Follow-Ups, Volume 2, Scientific Visualization: Interactions, Features, Metaphors (2011)


Abstract
We present a novel feature-based approach to surface generation from point clouds in three-dimensional space obtained by terrestrial and airborne laser scanning. In a first step, we apply a multiscale clustering and classification of local point set neighborhoods by considering their geometric shape. Corresponding feature values quantify the similarity to curve-like, surface-like, and solid-like shapes. For selecting and extracting surface features, we build a hierarchical trivariate B-spline representation of this surface feature function. Surfaces are extracted with a variant of marching cubes (MC), providing an inner and outer shell that are merged into a single non-manifold surface component at the field’s ridges. By adapting the isovalue of the feature function the user may control surface topology and thus adapt the extracted features to the noise level of the underlying point cloud. User control and adaptive approximation make our method robust for noisy and complex point data.

Cite as

Patric Keller, Oliver Kreylos, Eric S. Cowgill, Louise H. Kellogg, and Martin Hering-Bertram. Construction of Implicit Surfaces from Point Clouds Using a Feature-based Approach. In Scientific Visualization: Interactions, Features, Metaphors. Dagstuhl Follow-Ups, Volume 2, pp. 129-143, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InCollection{keller_et_al:DFU.Vol2.SciViz.2011.129,
  author =	{Keller, Patric and Kreylos, Oliver and Cowgill, Eric S. and Kellogg, Louise H. and Hering-Bertram, Martin},
  title =	{{Construction of Implicit Surfaces from Point Clouds Using a Feature-based Approach}},
  booktitle =	{Scientific Visualization: Interactions, Features, Metaphors},
  pages =	{129--143},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-939897-26-2},
  ISSN =	{1868-8977},
  year =	{2011},
  volume =	{2},
  editor =	{Hagen, Hans},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DFU.Vol2.SciViz.2011.129},
  URN =		{urn:nbn:de:0030-drops-33032},
  doi =		{10.4230/DFU.Vol2.SciViz.2011.129},
  annote =	{Keywords: 3D Point Clouds, Surface Reconstruction, Implicit Surfaces}
}
Document
Real-time Terrain Mapping

Authors: Tony Bernardin, Eric Cowgil, Ryan Gold, Bernd Hamann, and Oliver Kreylos

Published in: Dagstuhl Follow-Ups, Volume 1, Scientific Visualization: Advanced Concepts (2010)


Abstract
We present an interactive, real-time mapping system for digital elevation maps (DEMs), which allows Earth scientists to map and therefore understand the deformation of the continental crust at length scales of 10m to 1000km. Our system visualizes the surface of the Earth as a 3D~surface generated from a DEM, with a color texture generated from a registered multispectral image and vector-based mapping elements draped over it. We use a quadtree-based multiresolution method to be able to render high-resolution terrain mapping data sets of large spatial regions in real time. The main strength of our system is the combination of interactive rendering and interactive mapping directly onto the 3D~surface, with the ability to navigate the terrain and to change viewpoints arbitrarily during mapping. User studies and comparisons with commercially available mapping software show that our system improves mapping accuracy and efficiency, and also enables qualitatively different observations that are not possible to make with existing systems.

Cite as

Tony Bernardin, Eric Cowgil, Ryan Gold, Bernd Hamann, and Oliver Kreylos. Real-time Terrain Mapping. In Scientific Visualization: Advanced Concepts. Dagstuhl Follow-Ups, Volume 1, pp. 275-288, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InCollection{bernardin_et_al:DFU.SciViz.2010.275,
  author =	{Bernardin, Tony and Cowgil, Eric and Gold, Ryan and Hamann, Bernd and Kreylos, Oliver},
  title =	{{Real-time Terrain Mapping}},
  booktitle =	{Scientific Visualization: Advanced Concepts},
  pages =	{275--288},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-939897-19-4},
  ISSN =	{1868-8977},
  year =	{2010},
  volume =	{1},
  editor =	{Hagen, Hans},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DFU.SciViz.2010.275},
  URN =		{urn:nbn:de:0030-drops-27106},
  doi =		{10.4230/DFU.SciViz.2010.275},
  annote =	{Keywords: Earth, Space, and Environmental Sciences Visualization, Interaction, Terrain Visualization, Multiresolution Visualization}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail