Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)
Andre Droschinsky, Nils M. Kriege, and Petra Mutzel. Largest Weight Common Subtree Embeddings with Distance Penalties. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 54:1-54:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{droschinsky_et_al:LIPIcs.MFCS.2018.54, author = {Droschinsky, Andre and Kriege, Nils M. and Mutzel, Petra}, title = {{Largest Weight Common Subtree Embeddings with Distance Penalties}}, booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)}, pages = {54:1--54:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-086-6}, ISSN = {1868-8969}, year = {2018}, volume = {117}, editor = {Potapov, Igor and Spirakis, Paul and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.54}, URN = {urn:nbn:de:0030-drops-96367}, doi = {10.4230/LIPIcs.MFCS.2018.54}, annote = {Keywords: maximum common subtree, largest embeddable subtree, topological embedding, maximum weight matching, subtree homeomorphism} }
Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)
Andre Droschinsky, Nils M. Kriege, and Petra Mutzel. Faster Algorithms for the Maximum Common Subtree Isomorphism Problem. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{droschinsky_et_al:LIPIcs.MFCS.2016.33, author = {Droschinsky, Andre and Kriege, Nils M. and Mutzel, Petra}, title = {{Faster Algorithms for the Maximum Common Subtree Isomorphism Problem}}, booktitle = {41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)}, pages = {33:1--33:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-016-3}, ISSN = {1868-8969}, year = {2016}, volume = {58}, editor = {Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.33}, URN = {urn:nbn:de:0030-drops-64475}, doi = {10.4230/LIPIcs.MFCS.2016.33}, annote = {Keywords: MCS, maximum common subtree, enumeration algorithms, maximum weight bipartite matchings} }
Published in: OASIcs, Volume 26, German Conference on Bioinformatics 2012
Marianna D'Addario, Nils Kriege, and Sven Rahmann. Designing q-Unique DNA Sequences with Integer Linear Programs and Euler Tours in De Bruijn Graphs. In German Conference on Bioinformatics 2012. Open Access Series in Informatics (OASIcs), Volume 26, pp. 82-92, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)
@InProceedings{daddario_et_al:OASIcs.GCB.2012.82, author = {D'Addario, Marianna and Kriege, Nils and Rahmann, Sven}, title = {{Designing q-Unique DNA Sequences with Integer Linear Programs and Euler Tours in De Bruijn Graphs}}, booktitle = {German Conference on Bioinformatics 2012}, pages = {82--92}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-939897-44-6}, ISSN = {2190-6807}, year = {2012}, volume = {26}, editor = {B\"{o}cker, Sebastian and Hufsky, Franziska and Scheubert, Kerstin and Schleicher, Jana and Schuster, Stefan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.GCB.2012.82}, URN = {urn:nbn:de:0030-drops-37200}, doi = {10.4230/OASIcs.GCB.2012.82}, annote = {Keywords: DNA sequence design, De Bruijn graph, quotient graph, reverse complement, Euler graph, Euler tour} }
Feedback for Dagstuhl Publishing