Search Results

Documents authored by Larose, Benoit


Found 2 Possible Name Variants:

Larose, Benoit

Document
QCSP on Reflexive Tournaments

Authors: Benoît Larose, Petar Marković, Barnaby Martin, Daniël Paulusma, Siani Smith, and Stanislav Živný

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We give a complexity dichotomy for the Quantified Constraint Satisfaction Problem QCSP(H) when H is a reflexive tournament. It is well-known that reflexive tournaments can be split into a sequence of strongly connected components H₁,…,H_n so that there exists an edge from every vertex of H_i to every vertex of H_j if and only if i < j. We prove that if H has both its initial and final strongly connected component (possibly equal) of size 1, then QCSP(H) is in NL and otherwise QCSP(H) is NP-hard.

Cite as

Benoît Larose, Petar Marković, Barnaby Martin, Daniël Paulusma, Siani Smith, and Stanislav Živný. QCSP on Reflexive Tournaments. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 58:1-58:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{larose_et_al:LIPIcs.ESA.2021.58,
  author =	{Larose, Beno\^{i}t and Markovi\'{c}, Petar and Martin, Barnaby and Paulusma, Dani\"{e}l and Smith, Siani and \v{Z}ivn\'{y}, Stanislav},
  title =	{{QCSP on Reflexive Tournaments}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{58:1--58:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.58},
  URN =		{urn:nbn:de:0030-drops-146392},
  doi =		{10.4230/LIPIcs.ESA.2021.58},
  annote =	{Keywords: computational complexity, algorithmic graph theory, quantified constraints, universal algebra, constraint satisfaction}
}
Document
Track A: Algorithms, Complexity and Games
Dismantlability, Connectedness, and Mixing in Relational Structures

Authors: Raimundo Briceño, Andrei A. Bulatov, Víctor Dalmau, and Benoît Larose

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The Constraint Satisfaction Problem (CSP) and its counting counterpart appears under different guises in many areas of mathematics, computer science, statistical physics, and elsewhere. Its structural and algorithmic properties have demonstrated to play a crucial role in many of those applications. For instance, topological properties of the solution set such as connectedness is related to the hardness of CSPs over random structures. In approximate counting and statistical physics, where CSPs emerge in the form of spin systems, mixing properties and the uniqueness of Gibbs measures have been heavily exploited for approximating partition functions or the free energy of spin systems. Additionally, in the decision CSPs, structural properties of the relational structures involved - like, for example, dismantlability - and their logical characterizations have been instrumental for determining the complexity and other properties of the problem. In spite of the great diversity of those features, there are some eerie similarities between them. These were observed and made more precise in the case of graph homomorphisms by Brightwell and Winkler, who showed that the structural property of dismantlability of the target graph, the connectedness of the set of homomorphisms, good mixing properties of the corresponding spin system, and the uniqueness of Gibbs measure are all equivalent. In this paper we go a step further and demonstrate similar connections for arbitrary CSPs. This requires much deeper understanding of dismantling and the structure of the solution space in the case of relational structures, and new refined concepts of mixing introduced by Briceño. In addition, we develop properties related to the study of valid extensions of a given partially defined homomorphism, an approach that turns out to be novel even in the graph case. We also add to the mix the combinatorial property of finite duality and its logic counterpart, FO-definability, studied by Larose, Loten, and Tardif.

Cite as

Raimundo Briceño, Andrei A. Bulatov, Víctor Dalmau, and Benoît Larose. Dismantlability, Connectedness, and Mixing in Relational Structures. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{briceno_et_al:LIPIcs.ICALP.2019.29,
  author =	{Brice\~{n}o, Raimundo and Bulatov, Andrei A. and Dalmau, V{\'\i}ctor and Larose, Beno\^{i}t},
  title =	{{Dismantlability, Connectedness, and Mixing in Relational Structures}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.29},
  URN =		{urn:nbn:de:0030-drops-106059},
  doi =		{10.4230/LIPIcs.ICALP.2019.29},
  annote =	{Keywords: relational structure, constraint satisfaction problem, homomorphism, mixing properties, Gibbs measure}
}
Document
Surjective H-Colouring over Reflexive Digraphs

Authors: Benoit Larose, Barnaby Martin, and Daniel Paulusma

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
The Surjective H-Colouring problem is to test if a given graph allows a vertex-surjective homomorphism to a fixed graph H. The complexity of this problem has been well studied for undirected (partially) reflexive graphs. We introduce endo-triviality, the property of a structure that all of its endomorphisms that do not have range of size 1 are automorphisms, as a means to obtain complexity-theoretic classifications of Surjective H-Colouring in the case of reflexive digraphs. Chen [2014] proved, in the setting of constraint satisfaction problems, that Surjective H-Colouring is NP-complete if H has the property that all of its polymorphisms are essentially unary. We give the first concrete application of his result by showing that every endo-trivial reflexive digraph H has this property. We then use the concept of endo-triviality to prove, as our main result, a dichotomy for Surjective H-Colouring when H is a reflexive tournament: if H is transitive, then Surjective H-Colouring is in NL, otherwise it is NP-complete. By combining this result with some known and new results we obtain a complexity classification for Surjective H-Colouring when H is a partially reflexive digraph of size at most 3.

Cite as

Benoit Larose, Barnaby Martin, and Daniel Paulusma. Surjective H-Colouring over Reflexive Digraphs. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{larose_et_al:LIPIcs.STACS.2018.49,
  author =	{Larose, Benoit and Martin, Barnaby and Paulusma, Daniel},
  title =	{{Surjective H-Colouring over Reflexive Digraphs}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.49},
  URN =		{urn:nbn:de:0030-drops-84882},
  doi =		{10.4230/LIPIcs.STACS.2018.49},
  annote =	{Keywords: Surjective H-Coloring, Computational Complexity, Algorithmic Graph Theory, Universal Algebra, Constraint Satisfaction}
}
Document
Algebra and the Complexity of Digraph CSPs: a Survey

Authors: Benoit Larose

Published in: Dagstuhl Follow-Ups, Volume 7, The Constraint Satisfaction Problem: Complexity and Approximability (2017)


Abstract
We present a brief survey of some of the key results on the interplay between algebraic and graph-theoretic methods in the study of the complexity of digraph-based constraint satisfaction problems.

Cite as

Benoit Larose. Algebra and the Complexity of Digraph CSPs: a Survey. In The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, pp. 267-285, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InCollection{larose:DFU.Vol7.15301.267,
  author =	{Larose, Benoit},
  title =	{{Algebra and the Complexity of Digraph CSPs: a Survey}},
  booktitle =	{The Constraint Satisfaction Problem: Complexity and Approximability},
  pages =	{267--285},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-95977-003-3},
  ISSN =	{1868-8977},
  year =	{2017},
  volume =	{7},
  editor =	{Krokhin, Andrei and Zivny, Stanislav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DFU.Vol7.15301.267},
  URN =		{urn:nbn:de:0030-drops-69677},
  doi =		{10.4230/DFU.Vol7.15301.267},
  annote =	{Keywords: Constraint satisfaction problems, Polymorphisms, Digraphs}
}
Document
The Complexity of the List Homomorphism Problem for Graphs

Authors: László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson

Published in: LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)


Abstract
We completely classify the computational complexity of the list $\bH$-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph $\bH$ the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.

Cite as

László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson. The Complexity of the List Homomorphism Problem for Graphs. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 335-346, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{egri_et_al:LIPIcs.STACS.2010.2467,
  author =	{Egri, L\'{a}szl\'{o} and Krokhin, Andrei and Larose, Benoit and Tesson, Pascal},
  title =	{{The Complexity of the List Homomorphism Problem for Graphs}},
  booktitle =	{27th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{335--346},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-16-3},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{5},
  editor =	{Marion, Jean-Yves and Schwentick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2467},
  URN =		{urn:nbn:de:0030-drops-24675},
  doi =		{10.4230/LIPIcs.STACS.2010.2467},
  annote =	{Keywords: Graph homomorphism, constraint satisfaction problem, complexity, universal algebra, Datalog}
}

Larose, Benoît

Document
QCSP on Reflexive Tournaments

Authors: Benoît Larose, Petar Marković, Barnaby Martin, Daniël Paulusma, Siani Smith, and Stanislav Živný

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We give a complexity dichotomy for the Quantified Constraint Satisfaction Problem QCSP(H) when H is a reflexive tournament. It is well-known that reflexive tournaments can be split into a sequence of strongly connected components H₁,…,H_n so that there exists an edge from every vertex of H_i to every vertex of H_j if and only if i < j. We prove that if H has both its initial and final strongly connected component (possibly equal) of size 1, then QCSP(H) is in NL and otherwise QCSP(H) is NP-hard.

Cite as

Benoît Larose, Petar Marković, Barnaby Martin, Daniël Paulusma, Siani Smith, and Stanislav Živný. QCSP on Reflexive Tournaments. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 58:1-58:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{larose_et_al:LIPIcs.ESA.2021.58,
  author =	{Larose, Beno\^{i}t and Markovi\'{c}, Petar and Martin, Barnaby and Paulusma, Dani\"{e}l and Smith, Siani and \v{Z}ivn\'{y}, Stanislav},
  title =	{{QCSP on Reflexive Tournaments}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{58:1--58:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.58},
  URN =		{urn:nbn:de:0030-drops-146392},
  doi =		{10.4230/LIPIcs.ESA.2021.58},
  annote =	{Keywords: computational complexity, algorithmic graph theory, quantified constraints, universal algebra, constraint satisfaction}
}
Document
Track A: Algorithms, Complexity and Games
Dismantlability, Connectedness, and Mixing in Relational Structures

Authors: Raimundo Briceño, Andrei A. Bulatov, Víctor Dalmau, and Benoît Larose

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The Constraint Satisfaction Problem (CSP) and its counting counterpart appears under different guises in many areas of mathematics, computer science, statistical physics, and elsewhere. Its structural and algorithmic properties have demonstrated to play a crucial role in many of those applications. For instance, topological properties of the solution set such as connectedness is related to the hardness of CSPs over random structures. In approximate counting and statistical physics, where CSPs emerge in the form of spin systems, mixing properties and the uniqueness of Gibbs measures have been heavily exploited for approximating partition functions or the free energy of spin systems. Additionally, in the decision CSPs, structural properties of the relational structures involved - like, for example, dismantlability - and their logical characterizations have been instrumental for determining the complexity and other properties of the problem. In spite of the great diversity of those features, there are some eerie similarities between them. These were observed and made more precise in the case of graph homomorphisms by Brightwell and Winkler, who showed that the structural property of dismantlability of the target graph, the connectedness of the set of homomorphisms, good mixing properties of the corresponding spin system, and the uniqueness of Gibbs measure are all equivalent. In this paper we go a step further and demonstrate similar connections for arbitrary CSPs. This requires much deeper understanding of dismantling and the structure of the solution space in the case of relational structures, and new refined concepts of mixing introduced by Briceño. In addition, we develop properties related to the study of valid extensions of a given partially defined homomorphism, an approach that turns out to be novel even in the graph case. We also add to the mix the combinatorial property of finite duality and its logic counterpart, FO-definability, studied by Larose, Loten, and Tardif.

Cite as

Raimundo Briceño, Andrei A. Bulatov, Víctor Dalmau, and Benoît Larose. Dismantlability, Connectedness, and Mixing in Relational Structures. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{briceno_et_al:LIPIcs.ICALP.2019.29,
  author =	{Brice\~{n}o, Raimundo and Bulatov, Andrei A. and Dalmau, V{\'\i}ctor and Larose, Beno\^{i}t},
  title =	{{Dismantlability, Connectedness, and Mixing in Relational Structures}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.29},
  URN =		{urn:nbn:de:0030-drops-106059},
  doi =		{10.4230/LIPIcs.ICALP.2019.29},
  annote =	{Keywords: relational structure, constraint satisfaction problem, homomorphism, mixing properties, Gibbs measure}
}
Document
Surjective H-Colouring over Reflexive Digraphs

Authors: Benoit Larose, Barnaby Martin, and Daniel Paulusma

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
The Surjective H-Colouring problem is to test if a given graph allows a vertex-surjective homomorphism to a fixed graph H. The complexity of this problem has been well studied for undirected (partially) reflexive graphs. We introduce endo-triviality, the property of a structure that all of its endomorphisms that do not have range of size 1 are automorphisms, as a means to obtain complexity-theoretic classifications of Surjective H-Colouring in the case of reflexive digraphs. Chen [2014] proved, in the setting of constraint satisfaction problems, that Surjective H-Colouring is NP-complete if H has the property that all of its polymorphisms are essentially unary. We give the first concrete application of his result by showing that every endo-trivial reflexive digraph H has this property. We then use the concept of endo-triviality to prove, as our main result, a dichotomy for Surjective H-Colouring when H is a reflexive tournament: if H is transitive, then Surjective H-Colouring is in NL, otherwise it is NP-complete. By combining this result with some known and new results we obtain a complexity classification for Surjective H-Colouring when H is a partially reflexive digraph of size at most 3.

Cite as

Benoit Larose, Barnaby Martin, and Daniel Paulusma. Surjective H-Colouring over Reflexive Digraphs. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{larose_et_al:LIPIcs.STACS.2018.49,
  author =	{Larose, Benoit and Martin, Barnaby and Paulusma, Daniel},
  title =	{{Surjective H-Colouring over Reflexive Digraphs}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.49},
  URN =		{urn:nbn:de:0030-drops-84882},
  doi =		{10.4230/LIPIcs.STACS.2018.49},
  annote =	{Keywords: Surjective H-Coloring, Computational Complexity, Algorithmic Graph Theory, Universal Algebra, Constraint Satisfaction}
}
Document
Algebra and the Complexity of Digraph CSPs: a Survey

Authors: Benoit Larose

Published in: Dagstuhl Follow-Ups, Volume 7, The Constraint Satisfaction Problem: Complexity and Approximability (2017)


Abstract
We present a brief survey of some of the key results on the interplay between algebraic and graph-theoretic methods in the study of the complexity of digraph-based constraint satisfaction problems.

Cite as

Benoit Larose. Algebra and the Complexity of Digraph CSPs: a Survey. In The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, pp. 267-285, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InCollection{larose:DFU.Vol7.15301.267,
  author =	{Larose, Benoit},
  title =	{{Algebra and the Complexity of Digraph CSPs: a Survey}},
  booktitle =	{The Constraint Satisfaction Problem: Complexity and Approximability},
  pages =	{267--285},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-95977-003-3},
  ISSN =	{1868-8977},
  year =	{2017},
  volume =	{7},
  editor =	{Krokhin, Andrei and Zivny, Stanislav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DFU.Vol7.15301.267},
  URN =		{urn:nbn:de:0030-drops-69677},
  doi =		{10.4230/DFU.Vol7.15301.267},
  annote =	{Keywords: Constraint satisfaction problems, Polymorphisms, Digraphs}
}
Document
The Complexity of the List Homomorphism Problem for Graphs

Authors: László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson

Published in: LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)


Abstract
We completely classify the computational complexity of the list $\bH$-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph $\bH$ the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.

Cite as

László Egri, Andrei Krokhin, Benoit Larose, and Pascal Tesson. The Complexity of the List Homomorphism Problem for Graphs. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 335-346, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{egri_et_al:LIPIcs.STACS.2010.2467,
  author =	{Egri, L\'{a}szl\'{o} and Krokhin, Andrei and Larose, Benoit and Tesson, Pascal},
  title =	{{The Complexity of the List Homomorphism Problem for Graphs}},
  booktitle =	{27th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{335--346},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-16-3},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{5},
  editor =	{Marion, Jean-Yves and Schwentick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2467},
  URN =		{urn:nbn:de:0030-drops-24675},
  doi =		{10.4230/LIPIcs.STACS.2010.2467},
  annote =	{Keywords: Graph homomorphism, constraint satisfaction problem, complexity, universal algebra, Datalog}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail