Search Results

Documents authored by Lavi, Ron


Document
Bayesian Generalized Network Design

Authors: Yuval Emek, Shay Kutten, Ron Lavi, and Yangguang Shi

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We study network coordination problems, as captured by the setting of generalized network design (Emek et al., STOC 2018), in the face of uncertainty resulting from partial information that the network users hold regarding the actions of their peers. This uncertainty is formalized using Alon et al.’s Bayesian ignorance framework (TCS 2012). While the approach of Alon et al. is purely combinatorial, the current paper takes into account computational considerations: Our main technical contribution is the development of (strongly) polynomial time algorithms for local decision making in the face of Bayesian uncertainty.

Cite as

Yuval Emek, Shay Kutten, Ron Lavi, and Yangguang Shi. Bayesian Generalized Network Design. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{emek_et_al:LIPIcs.ESA.2019.45,
  author =	{Emek, Yuval and Kutten, Shay and Lavi, Ron and Shi, Yangguang},
  title =	{{Bayesian Generalized Network Design}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.45},
  URN =		{urn:nbn:de:0030-drops-111660},
  doi =		{10.4230/LIPIcs.ESA.2019.45},
  annote =	{Keywords: approximation algorithms, Bayesian competitive ratio, Bayesian ignorance, generalized network design, diseconomies of scale, energy consumption, smoothness, best response dynamics}
}
Document
Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and Information Management
Deterministic Leader Election in Programmable Matter

Authors: Yuval Emek, Shay Kutten, Ron Lavi, and William K. Moses Jr.

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Addressing a fundamental problem in programmable matter, we present the first deterministic algorithm to elect a unique leader in a system of connected amoebots assuming only that amoebots are initially contracted. Previous algorithms either used randomization, made various assumptions (shapes with no holes, or known shared chirality), or elected several co-leaders in some cases. Some of the building blocks we introduce in constructing the algorithm are of interest by themselves, especially the procedure we present for reaching common chirality among the amoebots. Given the leader election and the chirality agreement building block, it is known that various tasks in programmable matter can be performed or improved. The main idea of the new algorithm is the usage of the ability of the amoebots to move, which previous leader election algorithms have not used.

Cite as

Yuval Emek, Shay Kutten, Ron Lavi, and William K. Moses Jr.. Deterministic Leader Election in Programmable Matter. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 140:1-140:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{emek_et_al:LIPIcs.ICALP.2019.140,
  author =	{Emek, Yuval and Kutten, Shay and Lavi, Ron and Moses Jr., William K.},
  title =	{{Deterministic Leader Election in Programmable Matter}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{140:1--140:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.140},
  URN =		{urn:nbn:de:0030-drops-107169},
  doi =		{10.4230/LIPIcs.ICALP.2019.140},
  annote =	{Keywords: programmable matter, geometric amoebot model, leader election}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail