Search Results

Documents authored by Li, Xinyi


Document
Approximating the Geometric Edit Distance

Authors: Kyle Fox and Xinyi Li

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Edit distance is a measurement of similarity between two sequences such as strings, point sequences, or polygonal curves. Many matching problems from a variety of areas, such as signal analysis, bioinformatics, etc., need to be solved in a geometric space. Therefore, the geometric edit distance (GED) has been studied. In this paper, we describe the first strictly sublinear approximate near-linear time algorithm for computing the GED of two point sequences in constant dimensional Euclidean space. Specifically, we present a randomized O(n log^2n) time O(sqrt n)-approximation algorithm. Then, we generalize our result to give a randomized alpha-approximation algorithm for any alpha in [1, sqrt n], running in time O~(n^2/alpha^2). Both algorithms are Monte Carlo and return approximately optimal solutions with high probability.

Cite as

Kyle Fox and Xinyi Li. Approximating the Geometric Edit Distance. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fox_et_al:LIPIcs.ISAAC.2019.23,
  author =	{Fox, Kyle and Li, Xinyi},
  title =	{{Approximating the Geometric Edit Distance}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{23:1--23:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.23},
  URN =		{urn:nbn:de:0030-drops-115195},
  doi =		{10.4230/LIPIcs.ISAAC.2019.23},
  annote =	{Keywords: Geometric edit distance, Approximation, Randomized algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail