Search Results

Documents authored by Li Gørtz, Inge


Document
Boxed Permutation Pattern Matching

Authors: Mika Amit, Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, and Hjalte Wedel Vildhøj

Published in: LIPIcs, Volume 54, 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016)


Abstract
Given permutations T and P of length n and m, respectively, the Permutation Pattern Matching problem asks to find all m-length subsequences of T that are order-isomorphic to P. This problem has a wide range of applications but is known to be NP-hard. In this paper, we study the special case, where the goal is to only find the boxed subsequences of T that are order-isomorphic to P. This problem was introduced by Bruner and Lackner who showed that it can be solved in O(n^3) time. Cho et al. [CPM 2015] gave an O(n^2m) time algorithm and improved it to O(n^2 log m). In this paper we present a solution that uses only O(n^2) time. In general, there are instances where the output size is Omega(n^2) and hence our bound is optimal. To achieve our results, we introduce several new ideas including a novel reduction to 2D offline dominance counting. Our algorithm is surprisingly simple and straightforward to implement.

Cite as

Mika Amit, Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, and Hjalte Wedel Vildhøj. Boxed Permutation Pattern Matching. In 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 54, pp. 20:1-20:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{amit_et_al:LIPIcs.CPM.2016.20,
  author =	{Amit, Mika and Bille, Philip and Hagge Cording, Patrick and Li G{\o}rtz, Inge and Wedel Vildh{\o}j, Hjalte},
  title =	{{Boxed Permutation Pattern Matching}},
  booktitle =	{27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016)},
  pages =	{20:1--20:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-012-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{54},
  editor =	{Grossi, Roberto and Lewenstein, Moshe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2016.20},
  URN =		{urn:nbn:de:0030-drops-60744},
  doi =		{10.4230/LIPIcs.CPM.2016.20},
  annote =	{Keywords: Permutation, Subsequence, Pattern Matching, Order Preserving, Boxed Mesh Pattern}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail