Document

**Published in:** LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)

Hamiltonian simulation is one of the most important problems in the field of quantum computing. There have been extended efforts on designing algorithms for faster simulation, and the evolution time T for the simulation greatly affect algorithm runtime as expected. While there are some specific types of Hamiltonians that can be fast-forwarded, i.e., simulated within time o(T), for some large classes of Hamiltonians (e.g., all local/sparse Hamiltonians), existing simulation algorithms require running time at least linear in the evolution time T. On the other hand, while there exist lower bounds of Ω(T) circuit size for some large classes of Hamiltonian, these lower bounds do not rule out the possibilities of Hamiltonian simulation with large but "low-depth" circuits by running things in parallel. As a result, physical systems with system size scaling with T can potentially do a fast-forwarding simulation. Therefore, it is intriguing whether we can achieve fast Hamiltonian simulation with the power of parallelism.
In this work, we give a negative result for the above open problem in various settings. In the oracle model, we prove that there are time-independent sparse Hamiltonians that cannot be simulated via an oracle circuit of depth o(T). In the plain model, relying on the random oracle heuristic, we show that there exist time-independent local Hamiltonians and time-dependent geometrically local Hamiltonians on n qubits that cannot be simulated via an oracle circuit of depth o(T/n^c), where the Hamiltonians act on n qubits, and c is a constant. Lastly, we generalize the above results and show that any simulators that are geometrically local Hamiltonians cannot do the simulation much faster than parallel quantum algorithms.

Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Han-Hsuan Lin, Yao-Ting Lin, and Yu-Ching Shen. On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 33:1-33:45, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.CCC.2023.33, author = {Chia, Nai-Hui and Chung, Kai-Min and Hsieh, Yao-Ching and Lin, Han-Hsuan and Lin, Yao-Ting and Shen, Yu-Ching}, title = {{On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation}}, booktitle = {38th Computational Complexity Conference (CCC 2023)}, pages = {33:1--33:45}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-282-2}, ISSN = {1868-8969}, year = {2023}, volume = {264}, editor = {Ta-Shma, Amnon}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.33}, URN = {urn:nbn:de:0030-drops-183038}, doi = {10.4230/LIPIcs.CCC.2023.33}, annote = {Keywords: Hamiltonian simulation, Depth lower bound, Parallel query lower bound} }

Document

**Published in:** LIPIcs, Volume 197, 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)

The probably approximately correct (PAC) model [Leslie G. Valiant, 1984] is a well studied model in classical learning theory. Here, we generalize the PAC model from concepts of Boolean functions to quantum channels, introducing PAC model for learning quantum channels, and give two sample efficient algorithms that are analogous to the classical "Occam’s razor" result [Blumer et al., 1987]. The classical Occam’s razor algorithm is done trivially by excluding any concepts not compatible with the input-output pairs one gets, but such an approach is not immediately possible with a concept class of quantum channels, because the outputs are unknown quantum states from the quantum channel.
To study the quantum state learning problem associated with PAC learning quantum channels, we focus on the special case where the channels all have constant output. In this special case, learning the channels reduce to a problem of learning quantum states that is similar to the well known quantum state discrimination problem [Joonwoo Bae and Leong-Chuan Kwek, 2017], but with the extra twist that we allow ε-trace-distance-error in the output. We call this problem Approximate State Discrimination, which we believe is a natural problem that is of independent interest.
We give two algorithms for learning quantum channels in PAC model. The first algorithm has sample complexity
O((log|C| + log(1/ δ))/(ε²)),
but only works when the outputs are pure states, where C is the concept class, ε is the error of the output, and δ is the probability of failure of the algorithm. The second algorithm has sample complexity
O((log³|C|(log|C|+log(1/ δ)))/(ε²)),
and work for mixed state outputs. Some implications of our results are that we can PAC-learn a polynomial sized quantum circuit in polynomial samples, and approximate state discrimination can be solved in polynomial samples even when the size of the input set is exponential in the number of qubits, exponentially better than a naive state tomography.

Kai-Min Chung and Han-Hsuan Lin. Sample Efficient Algorithms for Learning Quantum Channels in PAC Model and the Approximate State Discrimination Problem. In 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 197, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{chung_et_al:LIPIcs.TQC.2021.3, author = {Chung, Kai-Min and Lin, Han-Hsuan}, title = {{Sample Efficient Algorithms for Learning Quantum Channels in PAC Model and the Approximate State Discrimination Problem}}, booktitle = {16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)}, pages = {3:1--3:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-198-6}, ISSN = {1868-8969}, year = {2021}, volume = {197}, editor = {Hsieh, Min-Hsiu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2021.3}, URN = {urn:nbn:de:0030-drops-139984}, doi = {10.4230/LIPIcs.TQC.2021.3}, annote = {Keywords: PAC learning, Quantum PAC learning, Sample Complexity, Approximate State Discrimination, Quantum information} }

Document

**Published in:** LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)

We present two efficient classical analogues of the quantum matrix inversion algorithm [Harrow et al., 2009] for low-rank matrices. Inspired by recent work of Tang [Tang, 2019], assuming length-square sampling access to input data, we implement the pseudoinverse of a low-rank matrix allowing us to sample from the solution to the problem Ax = b using fast sampling techniques. We construct implicit descriptions of the pseudo-inverse by finding approximate singular value decomposition of A via subsampling, then inverting the singular values. In principle, our approaches can also be used to apply any desired "smooth" function to the singular values. Since many quantum algorithms can be expressed as a singular value transformation problem [András Gilyén et al., 2019], our results indicate that more low-rank quantum algorithms can be effectively "dequantised" into classical length-square sampling algorithms.

Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao Wang. Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems with Logarithmic Dependence on the Dimension. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 47:1-47:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.ISAAC.2020.47, author = {Chia, Nai-Hui and Gily\'{e}n, Andr\'{a}s and Lin, Han-Hsuan and Lloyd, Seth and Tang, Ewin and Wang, Chunhao}, title = {{Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems with Logarithmic Dependence on the Dimension}}, booktitle = {31st International Symposium on Algorithms and Computation (ISAAC 2020)}, pages = {47:1--47:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-173-3}, ISSN = {1868-8969}, year = {2020}, volume = {181}, editor = {Cao, Yixin and Cheng, Siu-Wing and Li, Minming}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.47}, URN = {urn:nbn:de:0030-drops-133916}, doi = {10.4230/LIPIcs.ISAAC.2020.47}, annote = {Keywords: sublinear algorithms, quantum-inspired, regression, importance sampling, quantum machine learning} }

Document

**Published in:** LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)

Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm for solving SDPs with low-rank constraints; specifically, given an SDP with m constraint matrices, each of dimension n and rank r, our algorithm can compute any entry and efficient descriptions of the spectral decomposition of the solution matrix. The algorithm runs in time O(m⋅poly(log n,r,1/ε)) given access to a sampling-based low-overhead data structure for the constraint matrices, where ε is the precision of the solution. In addition, we apply our algorithm to a quantum state learning task as an application.
Technically, our approach aligns with 1) SDP solvers based on the matrix multiplicative weight (MMW) framework by Arora and Kale [TOC '12]; 2) sampling-based dequantizing framework pioneered by Tang [STOC '19]. In order to compute the matrix exponential required in the MMW framework, we introduce two new techniques that may be of independent interest:
- Weighted sampling: assuming sampling access to each individual constraint matrix A₁,…,A_τ, we propose a procedure that gives a good approximation of A = A₁+⋯+A_τ.
- Symmetric approximation: we propose a sampling procedure that gives the spectral decomposition of a low-rank Hermitian matrix A. To the best of our knowledge, this is the first sampling-based algorithm for spectral decomposition, as previous works only give singular values and vectors.

Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang. Quantum-Inspired Sublinear Algorithm for Solving Low-Rank Semidefinite Programming. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.MFCS.2020.23, author = {Chia, Nai-Hui and Li, Tongyang and Lin, Han-Hsuan and Wang, Chunhao}, title = {{Quantum-Inspired Sublinear Algorithm for Solving Low-Rank Semidefinite Programming}}, booktitle = {45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)}, pages = {23:1--23:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-159-7}, ISSN = {1868-8969}, year = {2020}, volume = {170}, editor = {Esparza, Javier and Kr\'{a}l', Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.23}, URN = {urn:nbn:de:0030-drops-126919}, doi = {10.4230/LIPIcs.MFCS.2020.23}, annote = {Keywords: Spectral decomposition, Semi-definite programming, Quantum-inspired algorithm, Sublinear algorithm} }

Document

**Published in:** LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)

The closest pair problem is a fundamental problem of computational geometry: given a set of n points in a d-dimensional space, find a pair with the smallest distance. A classical algorithm taught in introductory courses solves this problem in O(n log n) time in constant dimensions (i.e., when d = O(1)). This paper asks and answers the question of the problem’s quantum time complexity. Specifically, we give an Õ(n^(2/3)) algorithm in constant dimensions, which is optimal up to a polylogarithmic factor by the lower bound on the quantum query complexity of element distinctness. The key to our algorithm is an efficient history-independent data structure that supports quantum interference.
In polylog(n) dimensions, no known quantum algorithms perform better than brute force search, with a quadratic speedup provided by Grover’s algorithm. To give evidence that the quadratic speedup is nearly optimal, we initiate the study of quantum fine-grained complexity and introduce the Quantum Strong Exponential Time Hypothesis (QSETH), which is based on the assumption that Grover’s algorithm is optimal for CNF-SAT when the clause width is large. We show that the naïve Grover approach to closest pair in higher dimensions is optimal up to an n^o(1) factor unless QSETH is false. We also study the bichromatic closest pair problem and the orthogonal vectors problem, with broadly similar results.

Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and Ruizhe Zhang. On the Quantum Complexity of Closest Pair and Related Problems. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 16:1-16:43, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2020.16, author = {Aaronson, Scott and Chia, Nai-Hui and Lin, Han-Hsuan and Wang, Chunhao and Zhang, Ruizhe}, title = {{On the Quantum Complexity of Closest Pair and Related Problems}}, booktitle = {35th Computational Complexity Conference (CCC 2020)}, pages = {16:1--16:43}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-156-6}, ISSN = {1868-8969}, year = {2020}, volume = {169}, editor = {Saraf, Shubhangi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.16}, URN = {urn:nbn:de:0030-drops-125681}, doi = {10.4230/LIPIcs.CCC.2020.16}, annote = {Keywords: Closest pair, Quantum computing, Quantum fine grained reduction, Quantum strong exponential time hypothesis, Fine grained complexity} }

Document

**Published in:** LIPIcs, Volume 44, 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)

While powerful tools have been developed to analyze quantum query complexity, there are still many natural problems that do not fit neatly into the black box model of oracles. We create a new model that allows multiple oracles with differing costs. This model captures more of the difficulty of certain natural problems. We test this model on a simple problem, Search with Two Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We further give some evidence, using a geometric picture of Grover's algorithm, that our algorithm is exactly optimal.

Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin. Oracles with Costs. In 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 44, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{kimmel_et_al:LIPIcs.TQC.2015.1, author = {Kimmel, Shelby and Lin, Cedric Yen-Yu and Lin, Han-Hsuan}, title = {{Oracles with Costs}}, booktitle = {10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)}, pages = {1--26}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-96-5}, ISSN = {1868-8969}, year = {2015}, volume = {44}, editor = {Beigi, Salman and K\"{o}nig, Robert}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2015.1}, URN = {urn:nbn:de:0030-drops-55459}, doi = {10.4230/LIPIcs.TQC.2015.1}, annote = {Keywords: Quantum Algorithms, Query Complexity, Amplitude Amplification} }

Document

**Published in:** LIPIcs, Volume 33, 30th Conference on Computational Complexity (CCC 2015)

Inspired by the Elitzur-Vaidman bomb testing problem [Elitzur/Vaidman 1993], we introduce a new query complexity model, which we call bomb query complexity B(f). We investigate its relationship with the usual quantum query complexity Q(f), and show that B(f)=Theta(Q(f)^2).
This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on Q(f)=Theta(sqrt(B(f))). We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with O(n^(1.5)) quantum query complexity, improving the best known algorithm of O(n^(1.5) * sqrt(log(n))) [Furrow, 2008]. Applying this method to the maximum bipartite matching problem gives an O(n^(1.75)) algorithm, improving the best known trivial O(n^2) upper bound.

Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 537-566, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{lin_et_al:LIPIcs.CCC.2015.537, author = {Lin, Cedric Yen-Yu and Lin, Han-Hsuan}, title = {{Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester}}, booktitle = {30th Conference on Computational Complexity (CCC 2015)}, pages = {537--566}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-81-1}, ISSN = {1868-8969}, year = {2015}, volume = {33}, editor = {Zuckerman, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.537}, URN = {urn:nbn:de:0030-drops-50635}, doi = {10.4230/LIPIcs.CCC.2015.537}, annote = {Keywords: Quantum Algorithms, Query Complexity, Elitzur-Vaidman Bomb Tester, Adversary Method, Maximum Bipartite Matching} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail