Search Results

Documents authored by Lubin, Ronit


Document
Can We Recover the Cover?

Authors: Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat

Published in: LIPIcs, Volume 78, 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)


Abstract
Data analysis typically involves error recovery and detection of regularities as two different key tasks. In this paper we show that there are data types for which these two tasks can be powerfully combined. A common notion of regularity in strings is that of a cover. Data describing measures of a natural coverable phenomenon may be corrupted by errors caused by the measurement process, or by the inexact features of the phenomenon itself. Due to this reason, different variants of approximate covers have been introduced, some of which are NP-hard to compute. In this paper we assume that the Hamming distance metric measures the amount of corruption experienced, and study the problem of recovering the correct cover from data corrupted by mismatch errors, formally defined as the cover recovery problem (CRP). We show that for the Hamming distance metric, coverability is a powerful property allowing detecting the original cover and correcting the data, under suitable conditions. We also study a relaxation of another problem, which is called the approximate cover problem (ACP). Since the ACP is proved to be NP-hard [Amir,Levy,Lubin,Porat, CPM 2017], we study a relaxation, which we call the candidate-relaxation of the ACP, and show it has a polynomial time complexity. As a result, we get that the ACP also has a polynomial time complexity in many practical situations. An important application of our ACP relaxation study is also a polynomial time algorithm for the cover recovery problem (CRP).

Cite as

Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat. Can We Recover the Cover?. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 78, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{amir_et_al:LIPIcs.CPM.2017.25,
  author =	{Amir, Amihood and Levy, Avivit and Lewenstein, Moshe and Lubin, Ronit and Porat, Benny},
  title =	{{Can We Recover the Cover?}},
  booktitle =	{28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)},
  pages =	{25:1--25:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-039-2},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{78},
  editor =	{K\"{a}rkk\"{a}inen, Juha and Radoszewski, Jakub and Rytter, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2017.25},
  URN =		{urn:nbn:de:0030-drops-73190},
  doi =		{10.4230/LIPIcs.CPM.2017.25},
  annote =	{Keywords: periodicity, quasi-periodicity, cover, approximate cover, data recovery}
}
Document
Approximate Cover of Strings

Authors: Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat

Published in: LIPIcs, Volume 78, 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)


Abstract
Regularities in strings arise in various areas of science, including coding and automata theory, formal language theory, combinatorics, molecular biology and many others. A common notion to describe regularity in a string T is a cover, which is a string C for which every letter of T lies within some occurrence of C. The alignment of the cover repetitions in the given text is called a tiling. In many applications finding exact repetitions is not sufficient, due to the presence of errors. In this paper, we use a new approach for handling errors in coverable phenomena and define the approximate cover problem (ACP), in which we are given a text that is a sequence of some cover repetitions with possible mismatch errors, and we seek a string that covers the text with the minimum number of errors. We first show that the ACP is NP-hard, by studying the cover-size relaxation of the ACP, in which the requested size of the approximate cover is also given with the input string. We show this relaxation is already NP-hard. We also study another two relaxations of the ACP, which we call the partial-tiling relaxation of the ACP and the full-tiling relaxation of the ACP, in which a tiling of the requested cover is also given with the input string. A given full tiling retains all the occurrences of the cover before the errors, while in a partial tiling there can be additional occurrences of the cover that are not marked by the tiling. We show that the partial-tiling relaxation has a polynomial time complexity and give experimental evidence that the full-tiling also has polynomial time complexity. The study of these relaxations, besides shedding another light on the complexity of the ACP, also involves a deep understanding of the properties of covers, yielding some key lemmas and observations that may be helpful for a future study of regularities in the presence of errors.

Cite as

Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat. Approximate Cover of Strings. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 78, pp. 26:1-26:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{amir_et_al:LIPIcs.CPM.2017.26,
  author =	{Amir, Amihood and Levy, Avivit and Lubin, Ronit and Porat, Ely},
  title =	{{Approximate Cover of Strings}},
  booktitle =	{28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)},
  pages =	{26:1--26:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-039-2},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{78},
  editor =	{K\"{a}rkk\"{a}inen, Juha and Radoszewski, Jakub and Rytter, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2017.26},
  URN =		{urn:nbn:de:0030-drops-73189},
  doi =		{10.4230/LIPIcs.CPM.2017.26},
  annote =	{Keywords: periodicity, quasi-periodicity, cover, approximate cover}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail