Search Results

Documents authored by Lutz, Robyn R.


Document
Population-Induced Phase Transitions and the Verification of Chemical Reaction Networks

Authors: James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, Hugh D. Potter, and Matthew R. Riley

Published in: LIPIcs, Volume 174, 26th International Conference on DNA Computing and Molecular Programming (DNA 26) (2020)


Abstract
We show that very simple molecular systems, modeled as chemical reaction networks, can have behaviors that exhibit dramatic phase transitions at certain population thresholds. Moreover, the magnitudes of these thresholds can thwart attempts to use simulation, model checking, or approximation by differential equations to formally verify the behaviors of such systems at realistic populations. We show how formal theorem provers can successfully verify some such systems at populations where other verification methods fail.

Cite as

James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, Hugh D. Potter, and Matthew R. Riley. Population-Induced Phase Transitions and the Verification of Chemical Reaction Networks. In 26th International Conference on DNA Computing and Molecular Programming (DNA 26). Leibniz International Proceedings in Informatics (LIPIcs), Volume 174, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lathrop_et_al:LIPIcs.DNA.2020.5,
  author =	{Lathrop, James I. and Lutz, Jack H. and Lutz, Robyn R. and Potter, Hugh D. and Riley, Matthew R.},
  title =	{{Population-Induced Phase Transitions and the Verification of Chemical Reaction Networks}},
  booktitle =	{26th International Conference on DNA Computing and Molecular Programming (DNA 26)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-163-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{174},
  editor =	{Geary, Cody and Patitz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.2020.5},
  URN =		{urn:nbn:de:0030-drops-129583},
  doi =		{10.4230/LIPIcs.DNA.2020.5},
  annote =	{Keywords: chemical reaction networks, molecular programming, phase transitions, population protocols, verification}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail