Search Results

Documents authored by Martin, Christopher S.


Found 2 Possible Name Variants:

Martin, Christopher S.

Document
Approximation Algorithms for Capacitated k-Travelling Repairmen Problems

Authors: Christopher S. Martin and Mohammad R. Salavatipour

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
We study variants of the capacitated vehicle routing problem. In the multiple depot capacitated k-travelling repairmen problem (MD-CkTRP), we have a collection of clients to be served by one vehicle in a fleet of k identical vehicles based at given depots. Each client has a given demand that must be satisfied, and each vehicle can carry a total of at most Q demand before it must resupply at its original depot. We wish to route the vehicles in a way that obeys the constraints while minimizing the average time (latency) required to serve a client. This generalizes the Multi-depot k-Travelling Repairman Problem (MD-kTRP) [Chekuri and Kumar, IEEE-FOCS, 2003; Post and Swamy, ACM-SIAM SODA, 2015] to the capacitated vehicle setting, and while it has been previously studied [Lysgaard and Wohlk, EJOR, 2014; Rivera et al, Comput Optim Appl, 2015], no approximation algorithm with a proven ratio is known. We give a 42.49-approximation to this general problem, and refine this constant to 25.49 when clients have unit demands. As far as we are aware, these are the first constant-factor approximations for capacitated vehicle routing problems with a latency objective. We achieve these results by developing a framework allowing us to solve a wider range of latency problems, and crafting various orienteering-style oracles for use in this framework. We also show a simple LP rounding algorithm has a better approximation ratio for the maximum coverage problem with groups (MCG), first studied by Chekuri and Kumar [APPROX, 2004], and use it as a subroutine in our framework. Our approximation ratio for MD-CkTRP when restricted to uncapacitated setting matches the best known bound for it [Post and Swamy, ACM-SIAM SODA, 2015]. With our framework, any improvements to our oracles or our MCG approximation will result in improved approximations to the corresponding k-TRP problem.

Cite as

Christopher S. Martin and Mohammad R. Salavatipour. Approximation Algorithms for Capacitated k-Travelling Repairmen Problems. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 56:1-56:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{martin_et_al:LIPIcs.ISAAC.2016.56,
  author =	{Martin, Christopher S. and Salavatipour, Mohammad R.},
  title =	{{Approximation Algorithms for Capacitated k-Travelling Repairmen Problems}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{56:1--56:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.56},
  URN =		{urn:nbn:de:0030-drops-68262},
  doi =		{10.4230/LIPIcs.ISAAC.2016.56},
  annote =	{Keywords: approximation, capacitated, latency, group coverage}
}

Martin, Christopher

Document
Scheduling Problems over Network of Machines

Authors: Zachary Friggstad, Arnoosh Golestanian, Kamyar Khodamoradi, Christopher Martin, Mirmahdi Rahgoshay, Mohsen Rezapour, Mohammad R. Salavatipour, and Yifeng Zhang

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
We consider scheduling problems in which jobs need to be processed through a (shared) network of machines. The network is given in the form of a graph the edges of which represent the machines. We are also given a set of jobs, each specified by its processing time and a path in the graph. Every job needs to be processed in the order of edges specified by its path. We assume that jobs can wait between machines and preemption is not allowed; that is, once a job is started being processed on a machine, it must be completed without interruption. Every machine can only process one job at a time. The makespan of a schedule is the earliest time by which all the jobs have finished processing. The flow time (a.k.a. the completion time) of a job in a schedule is the difference in time between when it finishes processing on its last machine and when the it begins processing on its first machine. The total flow time (or the sum of completion times) is the sum of flow times (or completion times) of all jobs. Our focus is on finding schedules with the minimum sum of completion times or minimum makespan. In this paper, we develop several algorithms (both approximate and exact) for the problem both on general graphs and when the underlying graph of machines is a tree. Even in the very special case when the underlying network is a simple star, the problem is very interesting as it models a biprocessor scheduling with applications to data migration.

Cite as

Zachary Friggstad, Arnoosh Golestanian, Kamyar Khodamoradi, Christopher Martin, Mirmahdi Rahgoshay, Mohsen Rezapour, Mohammad R. Salavatipour, and Yifeng Zhang. Scheduling Problems over Network of Machines. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 5:1-5:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{friggstad_et_al:LIPIcs.APPROX-RANDOM.2017.5,
  author =	{Friggstad, Zachary and Golestanian, Arnoosh and Khodamoradi, Kamyar and Martin, Christopher and Rahgoshay, Mirmahdi and Rezapour, Mohsen and Salavatipour, Mohammad R. and Zhang, Yifeng},
  title =	{{Scheduling Problems over Network of Machines}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.5},
  URN =		{urn:nbn:de:0030-drops-75547},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.5},
  annote =	{Keywords: approximation algorithms, job-shop scheduling, min-sum edge coloring, minimum latency}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail