Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)
Salim Miloudi and Bouhadjar Meguenni. Exploring the Potential of Machine and Deep Learning Models for OpenStreetMap Data Quality Assessment and Improvement (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 53:1-53:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{miloudi_et_al:LIPIcs.GIScience.2023.53, author = {Miloudi, Salim and Meguenni, Bouhadjar}, title = {{Exploring the Potential of Machine and Deep Learning Models for OpenStreetMap Data Quality Assessment and Improvement}}, booktitle = {12th International Conference on Geographic Information Science (GIScience 2023)}, pages = {53:1--53:6}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-288-4}, ISSN = {1868-8969}, year = {2023}, volume = {277}, editor = {Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.53}, URN = {urn:nbn:de:0030-drops-189486}, doi = {10.4230/LIPIcs.GIScience.2023.53}, annote = {Keywords: OpenStreetMap (OSM), Volunteered Geographic Information (VGI), Machine Learning (ML), Deep Learning (DL), Quality Assessment (QA), Building Footprint Detection, Semantic Segmentation} }
Feedback for Dagstuhl Publishing