Search Results

Documents authored by Mehta, Hermish


Document
RANDOM
Local Treewidth of Random and Noisy Graphs with Applications to Stopping Contagion in Networks

Authors: Hermish Mehta and Daniel Reichman

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We study the notion of local treewidth in sparse random graphs: the maximum treewidth over all k-vertex subgraphs of an n-vertex graph. When k is not too large, we give nearly tight bounds for this local treewidth parameter; we also derive nearly tight bounds for the local treewidth of noisy trees, trees where every non-edge is added independently with small probability. We apply our upper bounds on the local treewidth to obtain fixed parameter tractable algorithms (on random graphs and noisy trees) for edge-removal problems centered around containing a contagious process evolving over a network. In these problems, our main parameter of study is k, the number of initially "infected" vertices in the network. For the random graph models we consider and a certain range of parameters the running time of our algorithms on n-vertex graphs is 2^o(k) poly(n), improving upon the 2^Ω(k) poly(n) performance of the best-known algorithms designed for worst-case instances of these edge deletion problems.

Cite as

Hermish Mehta and Daniel Reichman. Local Treewidth of Random and Noisy Graphs with Applications to Stopping Contagion in Networks. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mehta_et_al:LIPIcs.APPROX/RANDOM.2022.7,
  author =	{Mehta, Hermish and Reichman, Daniel},
  title =	{{Local Treewidth of Random and Noisy Graphs with Applications to Stopping Contagion in Networks}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.7},
  URN =		{urn:nbn:de:0030-drops-171299},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.7},
  annote =	{Keywords: Graph Algorithms, Random Graphs, Data Structures and Algorithms, Discrete Mathematics}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail