Search Results

Documents authored by Melnikov, Alexander


Document
Random Subgroups of Rationals

Authors: Ziyuan Gao, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, Alexander Melnikov, Karen Seidel, and Frank Stephan

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
This paper introduces and studies a notion of algorithmic randomness for subgroups of rationals. Given a randomly generated additive subgroup (G,+) of rationals, two main questions are addressed: first, what are the model-theoretic and recursion-theoretic properties of (G,+); second, what learnability properties can one extract from G and its subclass of finitely generated subgroups? For the first question, it is shown that the theory of (G,+) coincides with that of the additive group of integers and is therefore decidable; furthermore, while the word problem for G with respect to any generating sequence for G is not even semi-decidable, one can build a generating sequence beta such that the word problem for G with respect to beta is co-recursively enumerable (assuming that the set of generators of G is limit-recursive). In regard to the second question, it is proven that there is a generating sequence beta for G such that every non-trivial finitely generated subgroup of G is recursively enumerable and the class of all such subgroups of G is behaviourally correctly learnable, that is, every non-trivial finitely generated subgroup can be semantically identified in the limit (again assuming that the set of generators of G is limit-recursive). On the other hand, the class of non-trivial finitely generated subgroups of G cannot be syntactically identified in the limit with respect to any generating sequence for G. The present work thus contributes to a recent line of research studying algorithmically random infinite structures and uncovers an interesting connection between the arithmetical complexity of the set of generators of a randomly generated subgroup of rationals and the learnability of its finitely generated subgroups.

Cite as

Ziyuan Gao, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, Alexander Melnikov, Karen Seidel, and Frank Stephan. Random Subgroups of Rationals. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 25:1-25:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gao_et_al:LIPIcs.MFCS.2019.25,
  author =	{Gao, Ziyuan and Jain, Sanjay and Khoussainov, Bakhadyr and Li, Wei and Melnikov, Alexander and Seidel, Karen and Stephan, Frank},
  title =	{{Random Subgroups of Rationals}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{25:1--25:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.25},
  URN =		{urn:nbn:de:0030-drops-109693},
  doi =		{10.4230/LIPIcs.MFCS.2019.25},
  annote =	{Keywords: Martin-L\"{o}f randomness, subgroups of rationals, finitely generated subgroups of rationals, learning in the limit, behaviourally correct learning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail