Search Results

Documents authored by Montenegro-Retana, Felix


Document
Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry

Authors: Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann, Felix Montenegro-Retana, and Marianne Thieffry

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
A common way to accelerate shortest path algorithms on graphs is the use of a bidirectional search, which simultaneously explores the graph from the start and the destination. It has been observed recently that this strategy performs particularly well on scale-free real-world networks. Such networks typically have a heterogeneous degree distribution (e.g., a power-law distribution) and high clustering (i.e., vertices with a common neighbor are likely to be connected themselves). These two properties can be obtained by assuming an underlying hyperbolic geometry. To explain the observed behavior of the bidirectional search, we analyze its running time on hyperbolic random graphs and prove that it is {O~}(n^{2 - 1/alpha} + n^{1/(2 alpha)} + delta_{max}) with high probability, where alpha in (0.5, 1) controls the power-law exponent of the degree distribution, and delta_{max} is the maximum degree. This bound is sublinear, improving the obvious worst-case linear bound. Although our analysis depends on the underlying geometry, the algorithm itself is oblivious to it.

Cite as

Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann, Felix Montenegro-Retana, and Marianne Thieffry. Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{blasius_et_al:LIPIcs.ICALP.2018.20,
  author =	{Bl\"{a}sius, Thomas and Freiberger, Cedric and Friedrich, Tobias and Katzmann, Maximilian and Montenegro-Retana, Felix and Thieffry, Marianne},
  title =	{{Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{20:1--20:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.20},
  URN =		{urn:nbn:de:0030-drops-90246},
  doi =		{10.4230/LIPIcs.ICALP.2018.20},
  annote =	{Keywords: random graphs, hyperbolic geometry, scale-free networks, bidirectional shortest path}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail