Search Results

Documents authored by Moree, Pieter


Document
On Positivity and Minimality for Second-Order Holonomic Sequences

Authors: George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
An infinite sequence ⟨u_n⟩_n of real numbers is holonomic (also known as P-recursive or P-finite) if it satisfies a linear recurrence relation with polynomial coefficients. Such a sequence is said to be positive if each u_n ≥ 0, and minimal if, given any other linearly independent sequence ⟨v_n⟩_n satisfying the same recurrence relation, the ratio u_n/v_n → 0 as n → ∞. In this paper we give a Turing reduction of the problem of deciding positivity of second-order holonomic sequences to that of deciding minimality of such sequences. More specifically, we give a procedure for determining positivity of second-order holonomic sequences that terminates in all but an exceptional number of cases, and we show that in these exceptional cases positivity can be determined using an oracle for deciding minimality.

Cite as

George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell. On Positivity and Minimality for Second-Order Holonomic Sequences. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 67:1-67:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kenison_et_al:LIPIcs.MFCS.2021.67,
  author =	{Kenison, George and Klurman, Oleksiy and Lefaucheux, Engel and Luca, Florian and Moree, Pieter and Ouaknine, Jo\"{e}l and Whiteland, Markus A. and Worrell, James},
  title =	{{On Positivity and Minimality for Second-Order Holonomic Sequences}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{67:1--67:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.67},
  URN =		{urn:nbn:de:0030-drops-145071},
  doi =		{10.4230/LIPIcs.MFCS.2021.67},
  annote =	{Keywords: Holonomic sequences, Minimal solutions, Positivity Problem}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail