Search Results

Documents authored by Murhekar, Aniket


Document
Nash Equilibria of Two-Player Matrix Games Repeated Until Collision

Authors: Aniket Murhekar and Eklavya Sharma

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
We introduce and initiate the study of a natural class of repeated two-player matrix games, called Repeated-Until-Collision (RUC) games. In each round, both players simultaneously pick an action from a common action set {1, 2, … , n}. Depending on their chosen actions, they derive payoffs given by n × n matrices A and B, respectively. If their actions collide (i.e., they pick the same action), the game ends, otherwise, it proceeds to the next round. Both players want to maximize their total payoff until the game ends. RUC games can be interpreted as pursuit-evasion games or repeated hide-and-seek games. They also generalize hand cricket, a popular game among children in India. We show that under mild assumptions on the payoff matrices, every RUC game admits a Nash equilibrium (NE). Moreover, we show the existence of a stationary NE, where each player chooses their action according to a probability distribution over the action set that does not change across rounds. Remarkably, we show that all NE are effectively the same as the stationary NE, thus showing that RUC games admit an almost unique NE. Lastly, we also show how to compute (approximate) NE for RUC games.

Cite as

Aniket Murhekar and Eklavya Sharma. Nash Equilibria of Two-Player Matrix Games Repeated Until Collision. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{murhekar_et_al:LIPIcs.FSTTCS.2023.18,
  author =	{Murhekar, Aniket and Sharma, Eklavya},
  title =	{{Nash Equilibria of Two-Player Matrix Games Repeated Until Collision}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.18},
  URN =		{urn:nbn:de:0030-drops-193913},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.18},
  annote =	{Keywords: Two player games, Nash equilibrium, Repeated games}
}
Document
On Fair and Efficient Allocations of Indivisible Public Goods

Authors: Jugal Garg, Pooja Kulkarni, and Aniket Murhekar

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We study fair allocation of indivisible public goods subject to cardinality (budget) constraints. In this model, we have n agents and m available public goods, and we want to select k ≤ m goods in a fair and efficient manner. We first establish fundamental connections between the models of private goods, public goods, and public decision making by presenting polynomial-time reductions for the popular solution concepts of maximum Nash welfare (MNW) and leximin. These mechanisms are known to provide remarkable fairness and efficiency guarantees in private goods and public decision making settings. We show that they retain these desirable properties even in the public goods case. We prove that MNW allocations provide fairness guarantees of Proportionality up to one good (Prop1), 1/n approximation to Round Robin Share (RRS), and the efficiency guarantee of Pareto Optimality (PO). Further, we show that the problems of finding MNW or leximin-optimal allocations are NP-hard, even in the case of constantly many agents, or binary valuations. This is in sharp contrast to the private goods setting that admits polynomial-time algorithms under binary valuations. We also design pseudo-polynomial time algorithms for computing an exact MNW or leximin-optimal allocation for the cases of (i) constantly many agents, and (ii) constantly many goods with additive valuations. We also present an O(n)-factor approximation algorithm for MNW which also satisfies RRS, Prop1, and 1/2-Prop.

Cite as

Jugal Garg, Pooja Kulkarni, and Aniket Murhekar. On Fair and Efficient Allocations of Indivisible Public Goods. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.FSTTCS.2021.22,
  author =	{Garg, Jugal and Kulkarni, Pooja and Murhekar, Aniket},
  title =	{{On Fair and Efficient Allocations of Indivisible Public Goods}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.22},
  URN =		{urn:nbn:de:0030-drops-155331},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.22},
  annote =	{Keywords: Public goods, Nash welfare, Leximin, Proportionality}
}
Document
Near-Optimal Complexity Bounds for Fragments of the Skolem Problem

Authors: S. Akshay, Nikhil Balaji, Aniket Murhekar, Rohith Varma, and Nikhil Vyas

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
Given a linear recurrence sequence (LRS), specified using the initial conditions and the recurrence relation, the Skolem problem asks if zero ever occurs in the infinite sequence generated by the LRS. Despite active research over last few decades, its decidability is known only for a few restricted subclasses, by either restricting the order of the LRS (upto 4) or by restricting the structure of the LRS (e.g., roots of its characteristic polynomial). In this paper, we identify a subclass of LRS of arbitrary order for which the Skolem problem is easy, namely LRS all of whose characteristic roots are (possibly complex) roots of real algebraic numbers, i.e., roots satisfying x^d = r for r real algebraic. We show that for this subclass, the Skolem problem can be solved in NP^RP. As a byproduct, we implicitly obtain effective bounds on the zero set of the LRS for this subclass. While prior works in this area often exploit deep results from algebraic and transcendental number theory to get such effective results, our techniques are primarily algorithmic and use linear algebra and Galois theory. We also complement our upper bounds with a NP lower bound for the Skolem problem via a new direct reduction from 3-CNF-SAT, matching the best known lower bounds.

Cite as

S. Akshay, Nikhil Balaji, Aniket Murhekar, Rohith Varma, and Nikhil Vyas. Near-Optimal Complexity Bounds for Fragments of the Skolem Problem. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{akshay_et_al:LIPIcs.STACS.2020.37,
  author =	{Akshay, S. and Balaji, Nikhil and Murhekar, Aniket and Varma, Rohith and Vyas, Nikhil},
  title =	{{Near-Optimal Complexity Bounds for Fragments of the Skolem Problem}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.37},
  URN =		{urn:nbn:de:0030-drops-118982},
  doi =		{10.4230/LIPIcs.STACS.2020.37},
  annote =	{Keywords: Linear Recurrences, Skolem problem, NP-completeness, Weighted automata}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail