Search Results

Documents authored by Myers, Gene


Document
Merging Sorted Lists of Similar Strings

Authors: Gene Myers

Published in: LIPIcs, Volume 259, 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)


Abstract
Merging T sorted, non-redundant lists containing M elements into a single sorted, non-redundant result of size N ≥ M/T is a classic problem typically solved practically in O(M log T) time with a priority-queue data structure the most basic of which is the simple heap. We revisit this problem in the situation where the list elements are strings and the lists contain many identical or nearly identical elements. By keeping simple auxiliary information with each heap node, we devise an O(M log T+S) worst-case method that performs no more character comparisons than the sum of the lengths of all the strings S, and another O(M log (T/e¯)+S) method that becomes progressively more efficient as a function of the fraction of equal elements e¯ = M/N between input lists, reaching linear time when the lists are all identical. The methods perform favorably in practice versus an alternate formulation based on a trie.

Cite as

Gene Myers. Merging Sorted Lists of Similar Strings. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{myers:LIPIcs.CPM.2023.22,
  author =	{Myers, Gene},
  title =	{{Merging Sorted Lists of Similar Strings}},
  booktitle =	{34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-276-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{259},
  editor =	{Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.22},
  URN =		{urn:nbn:de:0030-drops-179763},
  doi =		{10.4230/LIPIcs.CPM.2023.22},
  annote =	{Keywords: heap, trie, longest common prefix}
}
Document
Accurate k-mer Classification Using Read Profiles

Authors: Yoshihiko Suzuki and Gene Myers

Published in: LIPIcs, Volume 242, 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)


Abstract
Contiguous strings of length k, called k-mers, are a fundamental element in many bioinformatics tasks. The number of occurrences of a k-mer in a given set of DNA sequencing reads, its k-mer count, has often been used to roughly estimate the copy number of a k-mer in the genome from which the reads were sampled. The problem of estimating copy numbers, called here the k-mer classification problem, has been based on simply analyzing the histogram of counts of all the k-mers in a data set, thus ignoring the positional context and dependency between multiple k-mers that appear nearby in the underlying genome. Here we present an efficient and significantly more accurate method for classifying k-mers by analyzing the sequence of k-mer counts along each sequencing read, called a read profile. By analyzing read profiles, we explicitly incorporate into the model the dependencies between the positionally adjacent k-mers and the sequence context-dependent error rates estimated from the given dataset. For long sequencing reads produced with the accurate high-fidelity (HiFi) sequencing technology, an implementation of our method, ClassPro, outperforms the conventional, histogram-based method in every simulation dataset of fruit fly and human with various realistic values of sequencing coverage and heterozygosity. Within only a few minutes, ClassPro achieves an average accuracy of > 99.99% across reads without repetitive k-mers and > 99.5% across all reads, in a typical fruit fly simulation data set with a 40× coverage. The resulting, more accurate k-mer classifications by ClassPro are in principle expected to improve any k-mer-based downstream analyses for sequenced reads such as read mapping and overlap, spectral alignment and error correction, haplotype phasing, and trio binning to name but a few. ClassPro is available at https://github.com/yoshihikosuzuki/ClassPro.

Cite as

Yoshihiko Suzuki and Gene Myers. Accurate k-mer Classification Using Read Profiles. In 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 242, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{suzuki_et_al:LIPIcs.WABI.2022.10,
  author =	{Suzuki, Yoshihiko and Myers, Gene},
  title =	{{Accurate k-mer Classification Using Read Profiles}},
  booktitle =	{22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-243-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{242},
  editor =	{Boucher, Christina and Rahmann, Sven},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2022.10},
  URN =		{urn:nbn:de:0030-drops-170446},
  doi =		{10.4230/LIPIcs.WABI.2022.10},
  annote =	{Keywords: K-mer, K-mer count, K-mer classification, HiFi sequencing}
}
Document
Next Generation Sequencing (Dagstuhl Seminar 16351)

Authors: Gene Myers, Mihai Pop, Knut Reinert, and Tandy Warnow

Published in: Dagstuhl Reports, Volume 6, Issue 8 (2017)


Abstract
Next Generation Sequencing (NGS) data have begun to appear in many applications that are clinically relevant, such as resequencing of cancer patients, disease-gene discovery and diagnostics for rare diseases, microbiome analyses, and gene expression profiling. The analysis of sequencing data is demanding because of the enormous data volume and the need for fast turnaround time, accuracy, reproducibility, and data security. This Dagstuhl Seminar aimed at a free and deep exchange of ideas and needs between the communities of algorithmicists and theoreticians and practitioners from the biomedical field. It identified several relevant fields such as data structures and algorithms for large data sets, hardware acceleration, new problems in the upcoming age of genomes, etc. which were discussed in breakout groups.

Cite as

Gene Myers, Mihai Pop, Knut Reinert, and Tandy Warnow. Next Generation Sequencing (Dagstuhl Seminar 16351). In Dagstuhl Reports, Volume 6, Issue 8, pp. 91-130, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{myers_et_al:DagRep.6.8.91,
  author =	{Myers, Gene and Pop, Mihai and Reinert, Knut and Warnow, Tandy},
  title =	{{Next Generation Sequencing (Dagstuhl Seminar 16351)}},
  pages =	{91--130},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2017},
  volume =	{6},
  number =	{8},
  editor =	{Myers, Gene and Pop, Mihai and Reinert, Knut and Warnow, Tandy},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.6.8.91},
  URN =		{urn:nbn:de:0030-drops-68395},
  doi =		{10.4230/DagRep.6.8.91},
  annote =	{Keywords: Cancer, DNA Sequence Assembly, Expression Profiles, Next Generation Sequencing, Sequence analysis, Software Engineering (Tools \& Libraries)}
}