Search Results

Documents authored by Neeman, Joe


Document
Noise Stability Is Computable and Approximately Low-Dimensional

Authors: Anindya De, Elchanan Mossel, and Joe Neeman

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
Questions of noise stability play an important role in hardness of approximation in computer science as well as in the theory of voting. In many applications, the goal is to find an optimizer of noise stability among all possible partitions of R^n for n >= 1 to k parts with given Gaussian measures mu_1, ..., mu_k. We call a partition epsilon-optimal, if its noise stability is optimal up to an additive epsilon. In this paper, we give an explicit, computable function n(epsilon) such that an epsilon-optimal partition exists in R^{n(epsilon)}. This result has implications for the computability of certain problems in non-interactive simulation, which are addressed in a subsequent work.

Cite as

Anindya De, Elchanan Mossel, and Joe Neeman. Noise Stability Is Computable and Approximately Low-Dimensional. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 10:1-10:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{de_et_al:LIPIcs.CCC.2017.10,
  author =	{De, Anindya and Mossel, Elchanan and Neeman, Joe},
  title =	{{Noise Stability Is Computable and Approximately Low-Dimensional}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{10:1--10:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.10},
  URN =		{urn:nbn:de:0030-drops-75390},
  doi =		{10.4230/LIPIcs.CCC.2017.10},
  annote =	{Keywords: Gaussian noise stability; Plurality is stablest; Ornstein Uhlenbeck operator}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail