Search Results

Documents authored by Newton, Ryan


Document
Optimizing Layout of Recursive Datatypes with Marmoset: Or, Algorithms + Data Layouts = Efficient Programs

Authors: Vidush Singhal, Chaitanya Koparkar, Joseph Zullo, Artem Pelenitsyn, Michael Vollmer, Mike Rainey, Ryan Newton, and Milind Kulkarni

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
While programmers know that memory representation of data structures can have significant effects on performance, compiler support to optimize the layout of those structures is an under-explored field. Prior work has optimized the layout of individual, non-recursive structures without considering how collections of those objects in linked or recursive data structures are laid out. This work introduces Marmoset, a compiler that optimizes the layouts of algebraic datatypes, with a special focus on producing highly optimized, packed data layouts where recursive structures can be traversed with minimal pointer chasing. Marmoset performs an analysis of how a recursive ADT is used across functions to choose a global layout that promotes simple, strided access for that ADT in memory. It does so by building and solving a constraint system to minimize an abstract cost model, yielding a predicted efficient layout for the ADT. Marmoset then builds on top of Gibbon, a prior compiler for packed, mostly-serial representations, to synthesize optimized ADTs. We show experimentally that Marmoset is able to choose optimal layouts across a series of microbenchmarks and case studies, outperforming both Gibbon’s baseline approach, as well as MLton, a Standard ML compiler that uses traditional pointer-heavy representations.

Cite as

Vidush Singhal, Chaitanya Koparkar, Joseph Zullo, Artem Pelenitsyn, Michael Vollmer, Mike Rainey, Ryan Newton, and Milind Kulkarni. Optimizing Layout of Recursive Datatypes with Marmoset: Or, Algorithms + Data Layouts = Efficient Programs. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 38:1-38:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{singhal_et_al:LIPIcs.ECOOP.2024.38,
  author =	{Singhal, Vidush and Koparkar, Chaitanya and Zullo, Joseph and Pelenitsyn, Artem and Vollmer, Michael and Rainey, Mike and Newton, Ryan and Kulkarni, Milind},
  title =	{{Optimizing Layout of Recursive Datatypes with Marmoset: Or, Algorithms + Data Layouts = Efficient Programs}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{38:1--38:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.38},
  URN =		{urn:nbn:de:0030-drops-208875},
  doi =		{10.4230/LIPIcs.ECOOP.2024.38},
  annote =	{Keywords: Tree traversals, Compilers, Data layout optimization, Dense data layout}
}
Document
Artifact
Optimizing Layout of Recursive Datatypes with Marmoset (Artifact)

Authors: Vidush Singhal, Chaitanya Koparkar, Joseph Zullo, Artem Pelenitsyn, Michael Vollmer, Mike Rainey, Ryan Newton, and Milind Kulkarni

Published in: DARTS, Volume 10, Issue 2, Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
While programmers know that memory representation of data structures can have significant effects on performance, compiler support to optimize the layout of those structures is an under-explored field. Prior work has optimized the layout of individual, non-recursive structures without considering how collections of those objects in linked or recursive data structures are laid out. This work introduces Marmoset, a compiler that optimizes the layouts of algebraic datatypes, with a special focus on producing highly optimized, packed data layouts where recursive structures can be traversed with minimal pointer chasing. Marmoset performs an analysis of how a recursive ADT is used across functions to choose a global layout that promotes simple, strided access for that ADT in memory. It does so by building and solving a constraint system to minimize an abstract cost model, yielding a predicted efficient layout for the ADT. Marmoset then builds on top of Gibbon, a prior compiler for packed, mostly-serial representations, to synthesize optimized ADTs. We show experimentally that Marmoset is able to choose optimal layouts across a series of microbenchmarks and case studies, outperforming both Gibbon’s baseline approach, as well as MLton, a Standard ML compiler that uses traditional pointer-heavy representations.

Cite as

Vidush Singhal, Chaitanya Koparkar, Joseph Zullo, Artem Pelenitsyn, Michael Vollmer, Mike Rainey, Ryan Newton, and Milind Kulkarni. Optimizing Layout of Recursive Datatypes with Marmoset (Artifact). In Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024). Dagstuhl Artifacts Series (DARTS), Volume 10, Issue 2, pp. 21:1-21:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{singhal_et_al:DARTS.10.2.21,
  author =	{Singhal, Vidush and Koparkar, Chaitanya and Zullo, Joseph and Pelenitsyn, Artem and Vollmer, Michael and Rainey, Mike and Newton, Ryan and Kulkarni, Milind},
  title =	{{Optimizing Layout of Recursive Datatypes with Marmoset (Artifact)}},
  pages =	{21:1--21:10},
  journal =	{Dagstuhl Artifacts Series},
  ISBN =	{978-3-95977-342-3},
  ISSN =	{2509-8195},
  year =	{2024},
  volume =	{10},
  number =	{2},
  editor =	{Singhal, Vidush and Koparkar, Chaitanya and Zullo, Joseph and Pelenitsyn, Artem and Vollmer, Michael and Rainey, Mike and Newton, Ryan and Kulkarni, Milind},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.10.2.21},
  URN =		{urn:nbn:de:0030-drops-209199},
  doi =		{10.4230/DARTS.10.2.21},
  annote =	{Keywords: Tree traversals, Compilers, Data layout optimization, Dense data layout}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail