Search Results

Documents authored by Osipov, George


Document
Parameterized Approximability for Modular Linear Equations

Authors: Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the Min-r-Lin(ℤ_m) problem: given a system S of length-r linear equations modulo m, find Z ⊆ S of minimum cardinality such that S-Z is satisfiable. The problem is NP-hard and UGC-hard to approximate in polynomial time within any constant factor even when r = m = 2. We focus on parameterized approximation with solution size as the parameter. Dabrowski, Jonsson, Ordyniak, Osipov and Wahlström [SODA-2023] showed that Min-r-Lin(ℤ_m) is in FPT if m is prime (i.e. ℤ_m is a field), and it is W[1]-hard if m is not a prime power. We show that Min-r-Lin(ℤ_{pⁿ}) is FPT-approximable within a factor of 2 for every prime p and integer n ≥ 2. This implies that Min-2-Lin(ℤ_m), m ∈ ℤ^+, is FPT-approximable within a factor of 2ω(m) where ω(m) counts the number of distinct prime divisors of m. The high-level idea behind the algorithm is to solve tighter and tighter relaxations of the problem, decreasing the set of possible values for the variables at each step. When working over ℤ_{pⁿ} and viewing the values in base-p, one can roughly think of a relaxation as fixing the number of trailing zeros and the least significant nonzero digits of the values assigned to the variables. To solve the relaxed problem, we construct a certain graph where solutions can be identified with a particular collection of cuts. The relaxation may hide obstructions that will only become visible in the next iteration of the algorithm, which makes it difficult to find optimal solutions. To deal with this, we use a strategy based on shadow removal [Marx & Razgon, STOC-2011] to compute solutions that (1) cost at most twice as much as the optimum and (2) allow us to reduce the set of values for all variables simultaneously. We complement the algorithmic result with two lower bounds, ruling out constant-factor FPT-approximation for Min-3-Lin(R) over any nontrivial ring R and for Min-2-Lin(R) over some finite commutative rings R.

Cite as

Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström. Parameterized Approximability for Modular Linear Equations. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 88:1-88:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dabrowski_et_al:LIPIcs.ESA.2025.88,
  author =	{Dabrowski, Konrad K. and Jonsson, Peter and Ordyniak, Sebastian and Osipov, George and Wahlstr\"{o}m, Magnus},
  title =	{{Parameterized Approximability for Modular Linear Equations}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{88:1--88:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.88},
  URN =		{urn:nbn:de:0030-drops-245562},
  doi =		{10.4230/LIPIcs.ESA.2025.88},
  annote =	{Keywords: parameterized complexity, approximation algorithms, linear equations}
}
Document
Parameterized Complexity of MinCSP over the Point Algebra

Authors: George Osipov, Marcin Pilipczuk, and Magnus Wahlström

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The input in the Minimum-Cost Constraint Satisfaction Problem (MinCSP) over the Point Algebra contains a set of variables, a collection of constraints of the form x < y, x = y, x ≤ y and x ≠ y, and a budget k. The goal is to check whether it is possible to assign rational values to the variables while breaking constraints of total cost at most k. This problem generalizes several prominent graph separation and transversal problems: - MinCSP({<}) is equivalent to Directed Feedback Arc Set, - MinCSP({< , ≤}) is equivalent to Directed Subset Feedback Arc Set, - MinCSP({= ,≠}) is equivalent to Edge Multicut, and - MinCSP({≤ ,≠}) is equivalent to Directed Symmetric Multicut. Apart from trivial cases, MinCSP({Γ}) for Γ ⊆ {< , = , ≤ ,≠} is NP-hard even to approximate within any constant factor under the Unique Games Conjecture. Hence, we study parameterized complexity of this problem under a natural parameterization by the solution cost k. We obtain a complete classification: if Γ ⊆ {< , = , ≤ ,≠} contains both ≤ and ≠, then MinCSP({Γ}) is W[1]-hard, otherwise it is fixed-parameter tractable. For the positive cases, we solve MinCSP({< , = ,≠}), generalizing the FPT results for Directed Feedback Arc Set and Edge Multicut as well as their weighted versions. Our algorithm works by reducing the problem into a Boolean MinCSP, which is in turn solved by flow augmentation. For the lower bounds, we prove that Directed Symmetric Multicut is W[1]-hard, solving an open problem.

Cite as

George Osipov, Marcin Pilipczuk, and Magnus Wahlström. Parameterized Complexity of MinCSP over the Point Algebra. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 93:1-93:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{osipov_et_al:LIPIcs.ESA.2024.93,
  author =	{Osipov, George and Pilipczuk, Marcin and Wahlstr\"{o}m, Magnus},
  title =	{{Parameterized Complexity of MinCSP over the Point Algebra}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{93:1--93:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.93},
  URN =		{urn:nbn:de:0030-drops-211640},
  doi =		{10.4230/LIPIcs.ESA.2024.93},
  annote =	{Keywords: parameterized complexity, constraint satisfaction, point algebra, multicut, feedback arc set}
}
Document
CSPs with Few Alien Constraints

Authors: Peter Jonsson, Victor Lagerkvist, and George Osipov

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
The constraint satisfaction problem asks to decide if a set of constraints over a relational structure 𝒜 is satisfiable (CSP(𝒜)). We consider CSP(𝒜 ∪ ℬ) where 𝒜 is a structure and ℬ is an alien structure, and analyse its (parameterized) complexity when at most k alien constraints are allowed. We establish connections and obtain transferable complexity results to several well-studied problems that previously escaped classification attempts. Our novel approach, utilizing logical and algebraic methods, yields an FPT versus pNP dichotomy for arbitrary finite structures and sharper dichotomies for Boolean structures and first-order reducts of (ℕ, =) (equality CSPs), together with many partial results for general ω-categorical structures.

Cite as

Peter Jonsson, Victor Lagerkvist, and George Osipov. CSPs with Few Alien Constraints. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jonsson_et_al:LIPIcs.CP.2024.15,
  author =	{Jonsson, Peter and Lagerkvist, Victor and Osipov, George},
  title =	{{CSPs with Few Alien Constraints}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{15:1--15:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.15},
  URN =		{urn:nbn:de:0030-drops-207005},
  doi =		{10.4230/LIPIcs.CP.2024.15},
  annote =	{Keywords: Constraint satisfaction, parameterized complexity, hybrid theories}
}
Document
Parameterized Complexity Classification for Interval Constraints

Authors: Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
Constraint satisfaction problems form a nicely behaved class of problems that lends itself to complexity classification results. From the point of view of parameterized complexity, a natural task is to classify the parameterized complexity of MinCSP problems parameterized by the number of unsatisfied constraints. In other words, we ask whether we can delete at most k constraints, where k is the parameter, to get a satisfiable instance. In this work, we take a step towards classifying the parameterized complexity for an important infinite-domain CSP: Allen’s interval algebra (IA). This CSP has closed intervals with rational endpoints as domain values and employs a set A of 13 basic comparison relations such as "precedes" or "during" for relating intervals. IA is a highly influential and well-studied formalism within AI and qualitative reasoning that has numerous applications in, for instance, planning, natural language processing and molecular biology. We provide an FPT vs. W[1]-hard dichotomy for MinCSP(Γ) for all Γ ⊆ A. IA is sometimes extended with unions of the relations in A or first-order definable relations over A, but extending our results to these cases would require first solving the parameterized complexity of Directed Symmetric Multicut, which is a notorious open problem. Already in this limited setting, we uncover connections to new variants of graph cut and separation problems. This includes hardness proofs for simultaneous cuts or feedback arc set problems in directed graphs, as well as new tractable cases with algorithms based on the recently introduced flow augmentation technique. Given the intractability of MinCSP(A) in general, we then consider (parameterized) approximation algorithms. We first show that MinCSP(A) cannot be polynomial-time approximated within any constant factor and continue by presenting a factor-2 fpt-approximation algorithm. Once again, this algorithm has its roots in flow augmentation.

Cite as

Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and Roohani Sharma. Parameterized Complexity Classification for Interval Constraints. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dabrowski_et_al:LIPIcs.IPEC.2023.11,
  author =	{Dabrowski, Konrad K. and Jonsson, Peter and Ordyniak, Sebastian and Osipov, George and Pilipczuk, Marcin and Sharma, Roohani},
  title =	{{Parameterized Complexity Classification for Interval Constraints}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.11},
  URN =		{urn:nbn:de:0030-drops-194306},
  doi =		{10.4230/LIPIcs.IPEC.2023.11},
  annote =	{Keywords: (minimum) constraint satisfaction problem, Allen’s interval algebra, parameterized complexity, cut problems}
}
Document
Parameterized Complexity of Equality MinCSP

Authors: George Osipov and Magnus Wahlström

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite languages over an infinite domain such as ℕ, where the relations are defined via first-order formulas whose only predicate is =. This is an important class of languages that forms the starting point of all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e., languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over equality languages forms a natural class of optimisation problems in its own right, covering such problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway Cut. We classify MinCSP(Γ) for every finite equality language Γ, under the natural parameter, as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive Multicut, the generalisation of Multicut where the "cut requests" come as disjunctions over O(1) individual cut requests s_i ≠ t_i. We also consider singleton expansions of equality languages, enriching an equality language with the capability for assignment constraints (x = i) for either a finite or infinitely many constants i, and fully characterize the complexity of the resulting MinCSP.

Cite as

George Osipov and Magnus Wahlström. Parameterized Complexity of Equality MinCSP. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 86:1-86:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{osipov_et_al:LIPIcs.ESA.2023.86,
  author =	{Osipov, George and Wahlstr\"{o}m, Magnus},
  title =	{{Parameterized Complexity of Equality MinCSP}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{86:1--86:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.86},
  URN =		{urn:nbn:de:0030-drops-187393},
  doi =		{10.4230/LIPIcs.ESA.2023.86},
  annote =	{Keywords: parameterized complexity, constraint satisfaction, parameterized approximation}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail