Search Results

Documents authored by Paparrizou, Anastasia


Document
On the Utility of Neighbourhood Singleton-Style Consistencies for Qualitative Constraint-Based Spatial and Temporal Reasoning

Authors: Michael Sioutis, Anastasia Paparrizou, and Tomi Janhunen

Published in: LIPIcs, Volume 147, 26th International Symposium on Temporal Representation and Reasoning (TIME 2019)


Abstract
A singleton-style consistency is a local consistency that verifies if each base relation (atom) of each constraint of a qualitative constraint network (QCN) can serve as a support with respect to the closure of that network under a (naturally) weaker local consistency. This local consistency is essential for tackling fundamental reasoning problems associated with QCNs, such as the satisfiability checking or the minimal labeling problem, but can suffer from redundant constraint checks, especially when those checks occur far from where the pruning usually takes place. In this paper, we propose singleton-style consistencies that are applied just on the neighbourhood of a singleton-checked constraint instead of the whole network. We make a theoretical comparison with existing consistencies and consequently prove some properties of the new ones. In addition, we propose algorithms to enforce our consistencies, as well as parsimonious variants thereof, that are more efficient in practice than the state of the art. We make an experimental evaluation with random and structured QCNs of Interval Algebra in the phase transition region to demonstrate the potential of our approach.

Cite as

Michael Sioutis, Anastasia Paparrizou, and Tomi Janhunen. On the Utility of Neighbourhood Singleton-Style Consistencies for Qualitative Constraint-Based Spatial and Temporal Reasoning. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sioutis_et_al:LIPIcs.TIME.2019.14,
  author =	{Sioutis, Michael and Paparrizou, Anastasia and Janhunen, Tomi},
  title =	{{On the Utility of Neighbourhood Singleton-Style Consistencies for Qualitative Constraint-Based Spatial and Temporal Reasoning}},
  booktitle =	{26th International Symposium on Temporal Representation and Reasoning (TIME 2019)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-127-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{147},
  editor =	{Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.14},
  URN =		{urn:nbn:de:0030-drops-113727},
  doi =		{10.4230/LIPIcs.TIME.2019.14},
  annote =	{Keywords: Qualitative constraints, spatial and temporal reasoning, singleton-style consistencies, neighbourhood, minimal labeling problem}
}
Document
Collective Singleton-Based Consistency for Qualitative Constraint Networks

Authors: Michael Sioutis, Anastasia Paparrizou, and Jean-François Condotta

Published in: LIPIcs, Volume 90, 24th International Symposium on Temporal Representation and Reasoning (TIME 2017)


Abstract
Partial singleton closure under weak composition, or partial singleton (weak) path-consistency for short, is essential for approximating satisfiability of qualitative constraints networks. Briefly put, partial singleton path-consistency ensures that each base relation of each of the constraints of a qualitative constraint network can define a singleton relation in the corresponding partial closure of that network under weak composition, or in its corresponding partially (weak) path-consistent subnetwork for short. In particular, partial singleton path-consistency has been shown to play a crucial role in tackling the minimal labeling problem of a qualitative constraint network, which is the problem of finding the strongest implied constraints of that network. In this paper, we propose a stronger local consistency that couples partial singleton path-consistency with the idea of collectively deleting certain unfeasible base relations by exploiting singleton checks. We then propose an efficient algorithm for enforcing this consistency that, given a qualitative constraint network, performs fewer constraint checks than the respective algorithm for enforcing partial singleton path-consistency in that network. We formally prove certain properties of our new local consistency, and motivate its usefulness through demonstrative examples and a preliminary experimental evaluation with qualitative constraint networks of Interval Algebra.

Cite as

Michael Sioutis, Anastasia Paparrizou, and Jean-François Condotta. Collective Singleton-Based Consistency for Qualitative Constraint Networks. In 24th International Symposium on Temporal Representation and Reasoning (TIME 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 90, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{sioutis_et_al:LIPIcs.TIME.2017.19,
  author =	{Sioutis, Michael and Paparrizou, Anastasia and Condotta, Jean-Fran\c{c}ois},
  title =	{{Collective Singleton-Based Consistency for Qualitative Constraint Networks}},
  booktitle =	{24th International Symposium on Temporal Representation and Reasoning (TIME 2017)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-052-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{90},
  editor =	{Schewe, Sven and Schneider, Thomas and Wijsen, Jef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2017.19},
  URN =		{urn:nbn:de:0030-drops-79237},
  doi =		{10.4230/LIPIcs.TIME.2017.19},
  annote =	{Keywords: Qualitative constraint network, qualitative spatial and temporal reasoning, partial singleton path-consistency, local consistency, minimal labeling pr}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail