Search Results

Documents authored by Petrakis, Iosif


Document
Dependent Sums and Dependent Products in Bishop’s Set Theory

Authors: Iosif Petrakis

Published in: LIPIcs, Volume 130, 24th International Conference on Types for Proofs and Programs (TYPES 2018)


Abstract
According to the standard, non type-theoretic accounts of Bishop’s constructivism (BISH), dependent functions are not necessary to BISH. Dependent functions though, are explicitly used by Bishop in his definition of the intersection of a family of subsets, and they are necessary to the definition of arbitrary products. In this paper we present the basic notions and principles of CSFT, a semi-formal constructive theory of sets and functions intended to be a minimal, adequate and faithful, in Feferman’s sense, semi-formalisation of Bishop’s set theory (BST). We define the notions of dependent sum (or exterior union) and dependent product of set-indexed families of sets within CSFT, and we prove the distributivity of prod over sum i.e., the translation of the type-theoretic axiom of choice within CSFT. We also define the notions of dependent sum (or interior union) and dependent product of set-indexed families of subsets within CSFT. For these definitions we extend BST with the universe of sets #1 V_0 and the universe of functions #1 V_1.

Cite as

Iosif Petrakis. Dependent Sums and Dependent Products in Bishop’s Set Theory. In 24th International Conference on Types for Proofs and Programs (TYPES 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 130, pp. 3:1-3:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{petrakis:LIPIcs.TYPES.2018.3,
  author =	{Petrakis, Iosif},
  title =	{{Dependent Sums and Dependent Products in Bishop’s Set Theory}},
  booktitle =	{24th International Conference on Types for Proofs and Programs (TYPES 2018)},
  pages =	{3:1--3:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-106-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{130},
  editor =	{Dybjer, Peter and Esp{\'\i}rito Santo, Jos\'{e} and Pinto, Lu{\'\i}s},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2018.3},
  URN =		{urn:nbn:de:0030-drops-114070},
  doi =		{10.4230/LIPIcs.TYPES.2018.3},
  annote =	{Keywords: Bishop’s constructive mathematics, Martin-L\"{o}f’s type theory, dependent sums, dependent products, type-theoretic axiom of choice}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail