Search Results

Documents authored by Piotrowski, Bartosz


Document
MizAR 60 for Mizar 50

Authors: Jan Jakubův, Karel Chvalovský, Zarathustra Goertzel, Cezary Kaliszyk, Mirek Olšák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
As a present to Mizar on its 50th anniversary, we develop an AI/TP system that automatically proves about 60% of the Mizar theorems in the hammer setting. We also automatically prove 75% of the Mizar theorems when the automated provers are helped by using only the premises used in the human-written Mizar proofs. We describe the methods and large-scale experiments leading to these results. This includes in particular the E and Vampire provers, their ENIGMA and Deepire learning modifications, a number of learning-based premise selection methods, and the incremental loop that interleaves growing a corpus of millions of ATP proofs with training increasingly strong AI/TP systems on them. We also present a selection of Mizar problems that were proved automatically.

Cite as

Jan Jakubův, Karel Chvalovský, Zarathustra Goertzel, Cezary Kaliszyk, Mirek Olšák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban. MizAR 60 for Mizar 50. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 19:1-19:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jakubuv_et_al:LIPIcs.ITP.2023.19,
  author =	{Jakub\r{u}v, Jan and Chvalovsk\'{y}, Karel and Goertzel, Zarathustra and Kaliszyk, Cezary and Ol\v{s}\'{a}k, Mirek and Piotrowski, Bartosz and Schulz, Stephan and Suda, Martin and Urban, Josef},
  title =	{{MizAR 60 for Mizar 50}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.19},
  URN =		{urn:nbn:de:0030-drops-183942},
  doi =		{10.4230/LIPIcs.ITP.2023.19},
  annote =	{Keywords: Mizar, ENIGMA, Automated Reasoning, Machine Learning}
}
Document
Towards Learning Quantifier Instantiation in SMT

Authors: Mikoláš Janota, Jelle Piepenbrock, and Bartosz Piotrowski

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
This paper applies machine learning (ML) to solve quantified satisfiability modulo theories (SMT) problems more efficiently. The motivating idea is that the solver should learn from already solved formulas to solve new ones. This is especially relevant in classes of similar formulas. We focus on the enumerative instantiation - a well-established approach to solving quantified formulas anchored in the Herbrand’s theorem. The task is to select the right ground terms to be instantiated. In ML parlance, this means learning to rank ground terms. We devise a series of features of the considered terms and train on them using boosted decision trees. In particular, we integrate the LightGBM library into the SMT solver cvc5. The experimental results demonstrate that the ML-guided solver enables us to solve more formulas than the base solver and reduce the number of quantifier instantiations. We also do an ablation study on the features used in the machine learning component, showing the contributions of the various additions.

Cite as

Mikoláš Janota, Jelle Piepenbrock, and Bartosz Piotrowski. Towards Learning Quantifier Instantiation in SMT. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{janota_et_al:LIPIcs.SAT.2022.7,
  author =	{Janota, Mikol\'{a}\v{s} and Piepenbrock, Jelle and Piotrowski, Bartosz},
  title =	{{Towards Learning Quantifier Instantiation in SMT}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.7},
  URN =		{urn:nbn:de:0030-drops-166810},
  doi =		{10.4230/LIPIcs.SAT.2022.7},
  annote =	{Keywords: satisfiability modulo theories, quantifier instantiation, machine learning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail