Search Results

Documents authored by Ramakrishnan, Prasanna


Document
The Composition Complexity of Majority

Authors: Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We study the complexity of computing majority as a composition of local functions: Maj_n = h(g_1,…,g_m), where each g_j: {0,1}ⁿ → {0,1} is an arbitrary function that queries only k ≪ n variables and h: {0,1}^m → {0,1} is an arbitrary combining function. We prove an optimal lower bound of m ≥ Ω(n/k log k) on the number of functions needed, which is a factor Ω(log k) larger than the ideal m = n/k. We call this factor the composition overhead; previously, no superconstant lower bounds on it were known for majority. Our lower bound recovers, as a corollary and via an entirely different proof, the best known lower bound for bounded-width branching programs for majority (Alon and Maass '86, Babai et al. '90). It is also the first step in a plan that we propose for breaking a longstanding barrier in lower bounds for small-depth boolean circuits. Novel aspects of our proof include sharp bounds on the information lost as computation flows through the inner functions g_j, and the bootstrapping of lower bounds for a multi-output function (Hamming weight) into lower bounds for a single-output one (majority).

Cite as

Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The Composition Complexity of Majority. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 19:1-19:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lecomte_et_al:LIPIcs.CCC.2022.19,
  author =	{Lecomte, Victor and Ramakrishnan, Prasanna and Tan, Li-Yang},
  title =	{{The Composition Complexity of Majority}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{19:1--19:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.19},
  URN =		{urn:nbn:de:0030-drops-165818},
  doi =		{10.4230/LIPIcs.CCC.2022.19},
  annote =	{Keywords: computational complexity, circuit lower bounds}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail