Search Results

Documents authored by Rao, Jinmeng


Document
LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection

Authors: Jinmeng Rao, Song Gao, Yuhao Kang, and Qunying Huang

Published in: LIPIcs, Volume 177, 11th International Conference on Geographic Information Science (GIScience 2021) - Part I (2020)


Abstract
The prevalence of location-based services contributes to the explosive growth of individual-level trajectory data and raises public concerns about privacy issues. In this research, we propose a novel LSTM-TrajGAN approach, which is an end-to-end deep learning model to generate privacy-preserving synthetic trajectory data for data sharing and publication. We design a loss metric function TrajLoss to measure the trajectory similarity losses for model training and optimization. The model is evaluated on the trajectory-user-linking task on a real-world semantic trajectory dataset. Compared with other common geomasking methods, our model can better prevent users from being re-identified, and it also preserves essential spatial, temporal, and thematic characteristics of the real trajectory data. The model better balances the effectiveness of trajectory privacy protection and the utility for spatial and temporal analyses, which offers new insights into the GeoAI-powered privacy protection.

Cite as

Jinmeng Rao, Song Gao, Yuhao Kang, and Qunying Huang. LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part I. Leibniz International Proceedings in Informatics (LIPIcs), Volume 177, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{rao_et_al:LIPIcs.GIScience.2021.I.12,
  author =	{Rao, Jinmeng and Gao, Song and Kang, Yuhao and Huang, Qunying},
  title =	{{LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part I},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-166-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{177},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.I.12},
  URN =		{urn:nbn:de:0030-drops-130471},
  doi =		{10.4230/LIPIcs.GIScience.2021.I.12},
  annote =	{Keywords: GeoAI, Deep Learning, Trajectory Privacy, Generative Adversarial Networks}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail