Search Results

Documents authored by Richomme, Gwenaël


Document
Reconstructing Words Using Queries on Subwords or Factors

Authors: Gwenaël Richomme and Matthieu Rosenfeld

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We study word reconstruction problems. Improving a previous result by P. Fleischmann, M. Lejeune, F. Manea, D. Nowotka and M. Rigo, we prove that, for any unknown word w of length n over an alphabet of cardinality k, w can be reconstructed from the number of occurrences as subwords (or scattered factors) of O(k²√{nlog₂(n)}) words. Two previous upper bounds obtained by S. S. Skiena and G. Sundaram are also slightly improved: one when considering information on the existence of subwords instead of on the numbers of their occurrences, and, the other when considering information on the existence of factors.

Cite as

Gwenaël Richomme and Matthieu Rosenfeld. Reconstructing Words Using Queries on Subwords or Factors. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 52:1-52:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{richomme_et_al:LIPIcs.STACS.2023.52,
  author =	{Richomme, Gwena\"{e}l and Rosenfeld, Matthieu},
  title =	{{Reconstructing Words Using Queries on Subwords or Factors}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{52:1--52:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.52},
  URN =		{urn:nbn:de:0030-drops-177041},
  doi =		{10.4230/LIPIcs.STACS.2023.52},
  annote =	{Keywords: Word reconstruction, Subwords, Factors}
}
Document
Determining Sets of Quasiperiods of Infinite Words

Authors: Guilhem Gamard and Gwenaël Richomme

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
A word is quasiperiodic if it can be obtained by concatenations and overlaps of a smaller word, called a quasiperiod. Based on links between quasiperiods, right special factors and square factors, we introduce a method to determine the set of quasiperiods of a given right infinite word. Then we study the structure of the sets of quasiperiods of right infinite words and, using our method, we provide examples of right infinite words with extremal sets of quasiperiods (no quasiperiod is quasiperiodic, all quasiperiods except one are quasiperiodic, ...). Our method is also used to provide a short proof of a recent characterization of quasiperiods of the Fibonacci word. Finally we extend this result to a new characterization of standard Sturmian words using a property of their sets of quasiperiods.

Cite as

Guilhem Gamard and Gwenaël Richomme. Determining Sets of Quasiperiods of Infinite Words. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 40:1-40:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gamard_et_al:LIPIcs.MFCS.2016.40,
  author =	{Gamard, Guilhem and Richomme, Gwena\"{e}l},
  title =	{{Determining Sets of Quasiperiods of Infinite Words}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{40:1--40:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.40},
  URN =		{urn:nbn:de:0030-drops-64540},
  doi =		{10.4230/LIPIcs.MFCS.2016.40},
  annote =	{Keywords: combinatorics on Words, quasiperiodicity, Sturmian words}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail