Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)
Ulrich Bauer and Fabian Roll. Wrapping Cycles in Delaunay Complexes: Bridging Persistent Homology and Discrete Morse Theory. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{bauer_et_al:LIPIcs.SoCG.2024.15, author = {Bauer, Ulrich and Roll, Fabian}, title = {{Wrapping Cycles in Delaunay Complexes: Bridging Persistent Homology and Discrete Morse Theory}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {15:1--15:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.15}, URN = {urn:nbn:de:0030-drops-199600}, doi = {10.4230/LIPIcs.SoCG.2024.15}, annote = {Keywords: persistent homology, discrete Morse theory, apparent pairs, Wrap complex, lexicographic optimal chains, shape reconstruction} }
Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)
Ulrich Bauer and Fabian Roll. Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Vietoris-Rips Filtrations. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{bauer_et_al:LIPIcs.SoCG.2022.15, author = {Bauer, Ulrich and Roll, Fabian}, title = {{Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Vietoris-Rips Filtrations}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {15:1--15:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.15}, URN = {urn:nbn:de:0030-drops-160237}, doi = {10.4230/LIPIcs.SoCG.2022.15}, annote = {Keywords: Vietoris–Rips complexes, persistent homology, discrete Morse theory, apparent pairs, hyperbolicity, geodesic defect, Ripser} }
Feedback for Dagstuhl Publishing