# Search Results

### Documents authored by Schepper, Philipp

Document
##### Computing Generalized Convolutions Faster Than Brute Force

Authors: Barış Can Esmer, Ariel Kulik, Dániel Marx, Philipp Schepper, and Karol Węgrzycki

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

##### Abstract
In this paper, we consider a general notion of convolution. Let D be a finite domain and let Dⁿ be the set of n-length vectors (tuples) of D. Let f : D × D → D be a function and let ⊕_f be a coordinate-wise application of f. The f-Convolution of two functions g,h : Dⁿ → {-M,…,M} is (g ⊛_f h)(v) := ∑_{v_g,v_h ∈ D^n s.t. v = v_g ⊕_f v_h} g(v_g) ⋅ h(v_h) for every 𝐯 ∈ Dⁿ. This problem generalizes many fundamental convolutions such as Subset Convolution, XOR Product, Covering Product or Packing Product, etc. For arbitrary function f and domain D we can compute f-Convolution via brute-force enumeration in 𝒪̃(|D|^{2n} ⋅ polylog(M)) time. Our main result is an improvement over this naive algorithm. We show that f-Convolution can be computed exactly in 𝒪̃((c ⋅ |D|²)ⁿ ⋅ polylog(M)) for constant c := 5/6 when D has even cardinality. Our main observation is that a cyclic partition of a function f : D × D → D can be used to speed up the computation of f-Convolution, and we show that an appropriate cyclic partition exists for every f. Furthermore, we demonstrate that a single entry of the f-Convolution can be computed more efficiently. In this variant, we are given two functions g,h : Dⁿ → {-M,…,M} alongside with a vector 𝐯 ∈ Dⁿ and the task of the f-Query problem is to compute integer (g ⊛_f h)(𝐯). This is a generalization of the well-known Orthogonal Vectors problem. We show that f-Query can be computed in 𝒪̃(|D|^{(ω/2)n} ⋅ polylog(M)) time, where ω ∈ [2,2.373) is the exponent of currently fastest matrix multiplication algorithm.

##### Cite as

Barış Can Esmer, Ariel Kulik, Dániel Marx, Philipp Schepper, and Karol Węgrzycki. Computing Generalized Convolutions Faster Than Brute Force. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

```@InProceedings{esmer_et_al:LIPIcs.IPEC.2022.12,
author =	{Esmer, Bar{\i}\c{s} Can and Kulik, Ariel and Marx, D\'{a}niel and Schepper, Philipp and W\k{e}grzycki, Karol},
title =	{{Computing Generalized Convolutions Faster Than Brute Force}},
booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
pages =	{12:1--12:22},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-260-0},
ISSN =	{1868-8969},
year =	{2022},
volume =	{249},
editor =	{Dell, Holger and Nederlof, Jesper},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.12},
URN =		{urn:nbn:de:0030-drops-173685},
doi =		{10.4230/LIPIcs.IPEC.2022.12},
annote =	{Keywords: Generalized Convolution, Fast Fourier Transform, Fast Subset Convolution}
}```
Document
##### Domination and Cut Problems on Chordal Graphs with Bounded Leafage

Authors: Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma, and Prafullkumar Tale

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

##### Abstract
The leafage of a chordal graph G is the minimum integer 𝓁 such that G can be realized as an intersection graph of subtrees of a tree with 𝓁 leaves. We consider structural parameterization by the leafage of classical domination and cut problems on chordal graphs. Fomin, Golovach, and Raymond [ESA 2018, Algorithmica 2020] proved, among other things, that Dominating Set on chordal graphs admits an algorithm running in time 2^𝒪(𝓁²) ⋅ n^𝒪(1). We present a conceptually much simpler algorithm that runs in time 2^𝒪(𝓁) ⋅ n^𝒪(1). We extend our approach to obtain similar results for Connected Dominating Set and Steiner Tree. We then consider the two classical cut problems MultiCut with Undeletable Terminals and Multiway Cut with Undeletable Terminals. We prove that the former is W[1]-hard when parameterized by the leafage and complement this result by presenting a simple n^𝒪(𝓁)-time algorithm. To our surprise, we find that Multiway Cut with Undeletable Terminals on chordal graphs can be solved, in contrast, in n^O(1)-time.

##### Cite as

Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma, and Prafullkumar Tale. Domination and Cut Problems on Chordal Graphs with Bounded Leafage. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 14:1-14:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

```@InProceedings{galby_et_al:LIPIcs.IPEC.2022.14,
author =	{Galby, Esther and Marx, D\'{a}niel and Schepper, Philipp and Sharma, Roohani and Tale, Prafullkumar},
title =	{{Domination and Cut Problems on Chordal Graphs with Bounded Leafage}},
booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
pages =	{14:1--14:24},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-260-0},
ISSN =	{1868-8969},
year =	{2022},
volume =	{249},
editor =	{Dell, Holger and Nederlof, Jesper},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.14},
URN =		{urn:nbn:de:0030-drops-173704},
doi =		{10.4230/LIPIcs.IPEC.2022.14},
annote =	{Keywords: Chordal Graphs, Leafage, FPT Algorithms, Dominating Set, MultiCut with Undeletable Terminals, Multiway Cut with Undeletable Terminals}
}```
Document
##### Anti-Factor Is FPT Parameterized by Treewidth and List Size (But Counting Is Hard)

Authors: Dániel Marx, Govind S. Sankar, and Philipp Schepper

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

##### Abstract
In the general AntiFactor problem, a graph G and, for every vertex v of G, a set X_v ⊆ ℕ of forbidden degrees is given. The task is to find a set S of edges such that the degree of v in S is not in the set X_v. Standard techniques (dynamic programming plus fast convolution) can be used to show that if M is the largest forbidden degree, then the problem can be solved in time (M+2)^{tw}⋅n^{O(1)} if a tree decomposition of width tw is given. However, significantly faster algorithms are possible if the sets X_v are sparse: our main algorithmic result shows that if every vertex has at most x forbidden degrees (we call this special case AntiFactor_x), then the problem can be solved in time (x+1)^{O(tw)}⋅n^{O(1)}. That is, AntiFactor_x is fixed-parameter tractable parameterized by treewidth tw and the maximum number x of excluded degrees. Our algorithm uses the technique of representative sets, which can be generalized to the optimization version, but (as expected) not to the counting version of the problem. In fact, we show that #AntiFactor₁ is already #W[1]-hard parameterized by the width of the given decomposition. Moreover, we show that, unlike for the decision version, the standard dynamic programming algorithm is essentially optimal for the counting version. Formally, for a fixed nonempty set X, we denote by X-AntiFactor the special case where every vertex v has the same set X_v = X of forbidden degrees. We show the following lower bound for every fixed set X: if there is an ε > 0 such that #X-AntiFactor can be solved in time (max X+2-ε)^{tw}⋅n^{O(1)} given a tree decomposition of width tw, then the Counting Strong Exponential-Time Hypothesis (#SETH) fails.

##### Cite as

Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-Factor Is FPT Parameterized by Treewidth and List Size (But Counting Is Hard). In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 22:1-22:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

```@InProceedings{marx_et_al:LIPIcs.IPEC.2022.22,
author =	{Marx, D\'{a}niel and Sankar, Govind S. and Schepper, Philipp},
title =	{{Anti-Factor Is FPT Parameterized by Treewidth and List Size (But Counting Is Hard)}},
booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
pages =	{22:1--22:23},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-260-0},
ISSN =	{1868-8969},
year =	{2022},
volume =	{249},
editor =	{Dell, Holger and Nederlof, Jesper},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.22},
URN =		{urn:nbn:de:0030-drops-173780},
doi =		{10.4230/LIPIcs.IPEC.2022.22},
annote =	{Keywords: Anti-Factor, General Factor, Treewidth, Representative Sets, SETH}
}```
Document
Track A: Algorithms, Complexity and Games
##### Degrees and Gaps: Tight Complexity Results of General Factor Problems Parameterized by Treewidth and Cutwidth

Authors: Dániel Marx, Govind S. Sankar, and Philipp Schepper

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

##### Abstract
In the General Factor problem, we are given an undirected graph G and for each vertex v ∈ V(G) a finite set B_v of non-negative integers. The task is to decide if there is a subset S ⊆ E(G) such that deg_S(v) ∈ B_v for all vertices v of G. Define the max-gap of a finite integer set B to be the largest d ≥ 0 such that there is an a ≥ 0 with [a,a+d+1] ∩ B = {a,a+d+1}. Cornuéjols showed in 1988 that if the max-gap of all sets B_v is at most 1, then the decision version of General Factor is polynomial-time solvable. This result was extended 2018 by Dudycz and Paluch for the optimization (i.e. minimization and maximization) versions. We present a general algorithm counting the number of solutions of a certain size in time #2 (M+1)^{tw}^{𝒪(1)}, given a tree decomposition of width tw, where M is the maximum integer over all B_v. By using convolution techniques from van Rooij (2020), we improve upon the previous (M+1)^{3tw}^𝒪(1) time algorithm by Arulselvan et al. from 2018. We prove that this algorithm is essentially optimal for all cases that are not trivial or polynomial time solvable for the decision, minimization or maximization versions. Our lower bounds show that such an improvement is not even possible for B-Factor, which is General Factor on graphs where all sets B_v agree with the fixed set B. We show that for every fixed B where the problem is NP-hard, our (max B+1)^tw^𝒪(1) algorithm cannot be significantly improved: assuming the Strong Exponential Time Hypothesis (SETH), no algorithm can solve B-Factor in time (max B+1-ε)^tw^𝒪(1) for any ε > 0. We extend this bound to the counting version of B-Factor for arbitrary, non-trivial sets B, assuming #SETH. We also investigate the parameterization of the problem by cutwidth. Unlike for treewidth, having a larger set B does not appear to make the problem harder: we give a 2^cutw^𝒪(1) algorithm for any B and provide a matching lower bound that this is optimal for the NP-hard cases.

##### Cite as

Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and Gaps: Tight Complexity Results of General Factor Problems Parameterized by Treewidth and Cutwidth. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

```@InProceedings{marx_et_al:LIPIcs.ICALP.2021.95,
author =	{Marx, D\'{a}niel and Sankar, Govind S. and Schepper, Philipp},
title =	{{Degrees and Gaps: Tight Complexity Results of General Factor Problems Parameterized by Treewidth and Cutwidth}},
booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
pages =	{95:1--95:20},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-195-5},
ISSN =	{1868-8969},
year =	{2021},
volume =	{198},
editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.95},
URN =		{urn:nbn:de:0030-drops-141647},
doi =		{10.4230/LIPIcs.ICALP.2021.95},
annote =	{Keywords: General Factor, General Matching, Treewidth, Cutwidth}
}```
Document
##### Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

Authors: Philipp Schepper

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

##### Abstract
The currently fastest algorithm for regular expression pattern matching and membership improves the classical O(nm) time algorithm by a factor of about log^{3/2}n. Instead of focussing on general patterns we analyse homogeneous patterns of bounded depth in this work. For them a classification splitting the types in easy (strongly sub-quadratic) and hard (essentially quadratic time under SETH) is known. We take a very fine-grained look at the hard pattern types from this classification and show a dichotomy: few types allow super-poly-logarithmic improvements while the algorithms for the other pattern types can only be improved by a constant number of log-factors, assuming the Formula-SAT Hypothesis.

##### Cite as

Philipp Schepper. Fine-Grained Complexity of Regular Expression Pattern Matching and Membership. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 80:1-80:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

```@InProceedings{schepper:LIPIcs.ESA.2020.80,
author =	{Schepper, Philipp},
title =	{{Fine-Grained Complexity of Regular Expression Pattern Matching and Membership}},
booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
pages =	{80:1--80:20},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-162-7},
ISSN =	{1868-8969},
year =	{2020},
volume =	{173},
editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.80},
URN =		{urn:nbn:de:0030-drops-129464},
doi =		{10.4230/LIPIcs.ESA.2020.80},
annote =	{Keywords: Fine-Grained Complexity, Regular Expression, Pattern Matching, Dichotomy}
}```
X

Feedback for Dagstuhl Publishing