Search Results

Documents authored by Schiller, Elad Michael


Document
Brief Announcement
Brief Announcement: Towards Optimal Communication Byzantine Reliable Broadcast Under a Message Adversary

Authors: Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal, Elad Michael Schiller, François Taïani, and Vassilis Zikas

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
We address the problem of Reliable Broadcast in asynchronous message-passing systems with n nodes, of which up to t are malicious (faulty), in addition to a message adversary that can drop some of the messages sent by correct (non-faulty) nodes. We present a Message-Adversary-Tolerant Byzantine Reliable Broadcast (MBRB) algorithm that communicates an almost optimal amount of O(|m|+n²κ) bits per node, where |m| represents the length of the application message and κ = Ω(log n) is a security parameter. This improves upon the state-of-the-art MBRB solution (Albouy, Frey, Raynal, and Taïani, TCS 2023), which incurs communication of O(n|m|+n²κ) bits per node. Our solution sends at most 4n² messages overall, which is asymptotically optimal. Reduced communication is achieved by employing coding techniques that replace the need for all nodes to (re-)broadcast the entire application message m. Instead, nodes forward authenticated fragments of the encoding of m using an erasure-correcting code. Under the cryptographic assumptions of PKI and collision-resistant hash, and assuming n > 3t+2d, where the adversary drops at most d messages per broadcast, our algorithm allows at least 𝓁 = n - t - (1 + ε)d (for any ε > 0) correct nodes to reconstruct m, despite missing fragments caused by the malicious nodes and the message adversary.

Cite as

Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal, Elad Michael Schiller, François Taïani, and Vassilis Zikas. Brief Announcement: Towards Optimal Communication Byzantine Reliable Broadcast Under a Message Adversary. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 41:1-41:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{albouy_et_al:LIPIcs.DISC.2024.41,
  author =	{Albouy, Timoth\'{e} and Frey, Davide and Gelles, Ran and Hazay, Carmit and Raynal, Michel and Schiller, Elad Michael and Ta\"{i}ani, Fran\c{c}ois and Zikas, Vassilis},
  title =	{{Brief Announcement: Towards Optimal Communication Byzantine Reliable Broadcast Under a Message Adversary}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{41:1--41:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.41},
  URN =		{urn:nbn:de:0030-drops-212697},
  doi =		{10.4230/LIPIcs.DISC.2024.41},
  annote =	{Keywords: Asynchronous message-passing, Byzantine fault-tolerance, Message adversary, Reliable Broadcast}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail