Search Results

Documents authored by Shahar, Noa


Document
Track A: Algorithms, Complexity and Games
New Fault Tolerant Subset Preservers

Authors: Greg Bodwin, Keerti Choudhary, Merav Parter, and Noa Shahar

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Fault tolerant distance preservers are sparse subgraphs that preserve distances between given pairs of nodes under edge or vertex failures. In this paper, we present the first non-trivial constructions of subset distance preservers, which preserve all distances among a subset of nodes S, that can handle either an edge or a vertex fault. - For an n-vertex undirected weighted graph or weighted DAG G = (V,E) and S ⊆ V, we present a construction of a subset preserver with Õ(|S|n) edges that is resilient to a single fault. In the single pair case (|S| = 2), the bound improves to O(n). We further provide a nearly-matching lower bound of Ω(|S|n) in either setting, and we show that the same lower bound holds conditionally even if attention is restricted to unweighted graphs. - For an n-vertex directed unweighted graph G = (V,E) and r ∈ V, S ⊆ V, we present a construction of a preserver of distances in {r} × S with Õ(n^{4/3} |S|^{5/6}) edges that is resilient to a single fault. In the case |S| = 1 the bound improves to O(n^{4/3}), and for this case we provide another matching conditional lower bound. - For an n-vertex directed weighted graph G = (V, E) and r ∈ V, S ⊆ V, we present a construction of a preserver of distances in {r} × S with Õ(n^{3/2} |S|^{3/4}) edges that is resilient to a single vertex fault. (It was proved in [Greg Bodwin et al., 2017] that the bound improves to O(n^{3/2}) when |S| = 1, and that this is conditionally tight.)

Cite as

Greg Bodwin, Keerti Choudhary, Merav Parter, and Noa Shahar. New Fault Tolerant Subset Preservers. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2020.15,
  author =	{Bodwin, Greg and Choudhary, Keerti and Parter, Merav and Shahar, Noa},
  title =	{{New Fault Tolerant Subset Preservers}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.15},
  URN =		{urn:nbn:de:0030-drops-124222},
  doi =		{10.4230/LIPIcs.ICALP.2020.15},
  annote =	{Keywords: Subset Preservers, Distances, Fault-tolerance}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail