Search Results

Documents authored by Shariful, FNU


Document
Media Exposition
Visualizing WSPDs and Their Applications (Media Exposition)

Authors: Anirban Ghosh, FNU Shariful, and David Wisnosky

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Introduced by Callahan and Kosaraju back in 1995, the concept of well-separated pair decomposition (WSPD) has occupied a special significance in computational geometry when it comes to solving distance problems in d-space. We present an in-browser tool that can be used to visualize WSPDs and several of their applications in 2-space. Apart from research, it can also be used by instructors for introducing WSPDs in a classroom setting. The tool will be permanently maintained by the third author at https://wisno33.github.io/VisualizingWSPDsAndTheirApplications/.

Cite as

Anirban Ghosh, FNU Shariful, and David Wisnosky. Visualizing WSPDs and Their Applications (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 68:1-68:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.SoCG.2022.68,
  author =	{Ghosh, Anirban and Shariful, FNU and Wisnosky, David},
  title =	{{Visualizing WSPDs and Their Applications}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{68:1--68:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.68},
  URN =		{urn:nbn:de:0030-drops-160760},
  doi =		{10.4230/LIPIcs.SoCG.2022.68},
  annote =	{Keywords: well-separated pair decomposition, nearest neighbor, geometric spanners, minimum spanning tree}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail