Search Results

Documents authored by Shirley, Morgan


Document
An Improved Protocol for ExactlyN with More Than 3 Players

Authors: Lianna Hambardzumyan, Toniann Pitassi, Suhail Sherif, Morgan Shirley, and Adi Shraibman

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
The ExactlyN problem in the number-on-forehead (NOF) communication setting asks k players, each of whom can see every input but their own, if the k input numbers add up to N. Introduced by Chandra, Furst and Lipton in 1983, ExactlyN is important for its role in understanding the strength of randomness in communication complexity with many players. It is also tightly connected to the field of combinatorics: its k-party NOF communication complexity is related to the size of the largest corner-free subset in [N]^{k-1}. In 2021, Linial and Shraibman gave more efficient protocols for ExactlyN for 3 players. As an immediate consequence, this also gave a new construction of larger corner-free subsets in [N]². Later that year Green gave a further refinement to their argument. These results represent the first improvements to the highest-order term for k = 3 since the famous work of Behrend in 1946. In this paper we give a corresponding improvement to the highest-order term for k > 3, the first since Rankin in 1961. That is, we give a more efficient protocol for ExactlyN as well as larger corner-free sets in higher dimensions. Nearly all previous results in this line of research approached the problem from the combinatorics perspective, implicitly resulting in non-constructive protocols for ExactlyN. Approaching the problem from the communication complexity point of view and constructing explicit protocols for ExactlyN was key to the improvements in the k = 3 setting. As a further contribution we provide explicit protocols for ExactlyN for any number of players which serves as a base for our improvement.

Cite as

Lianna Hambardzumyan, Toniann Pitassi, Suhail Sherif, Morgan Shirley, and Adi Shraibman. An Improved Protocol for ExactlyN with More Than 3 Players. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 58:1-58:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hambardzumyan_et_al:LIPIcs.ITCS.2024.58,
  author =	{Hambardzumyan, Lianna and Pitassi, Toniann and Sherif, Suhail and Shirley, Morgan and Shraibman, Adi},
  title =	{{An Improved Protocol for ExactlyN with More Than 3 Players}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{58:1--58:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.58},
  URN =		{urn:nbn:de:0030-drops-195868},
  doi =		{10.4230/LIPIcs.ITCS.2024.58},
  annote =	{Keywords: Corner-free sets, number-on-forehead communication}
}
Document
Separation of the Factorization Norm and Randomized Communication Complexity

Authors: Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, and Morgan Shirley

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
In an influential paper, Linial and Shraibman (STOC '07) introduced the factorization norm as a powerful tool for proving lower bounds against randomized and quantum communication complexities. They showed that the logarithm of the approximate γ₂-factorization norm is a lower bound for these parameters and asked whether a stronger lower bound that replaces approximate γ₂ norm with the γ₂ norm holds. We answer the question of Linial and Shraibman in the negative by exhibiting a 2ⁿ×2ⁿ Boolean matrix with γ₂ norm 2^Ω(n) and randomized communication complexity O(log n). As a corollary, we recover the recent result of Chattopadhyay, Lovett, and Vinyals (CCC '19) that deterministic protocols with access to an Equality oracle are exponentially weaker than (one-sided error) randomized protocols. In fact, as a stronger consequence, our result implies an exponential separation between the power of unambiguous nondeterministic protocols with access to Equality oracle and (one-sided error) randomized protocols, which answers a question of Pitassi, Shirley, and Shraibman (ITSC '23). Our result also implies a conjecture of Sherif (Ph.D. thesis) that the γ₂ norm of the Integer Inner Product function (IIP) in dimension 3 or higher is exponential in its input size.

Cite as

Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, and Morgan Shirley. Separation of the Factorization Norm and Randomized Communication Complexity. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cheung_et_al:LIPIcs.CCC.2023.1,
  author =	{Cheung, Tsun-Ming and Hatami, Hamed and Hosseini, Kaave and Shirley, Morgan},
  title =	{{Separation of the Factorization Norm and Randomized Communication Complexity}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{1:1--1:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.1},
  URN =		{urn:nbn:de:0030-drops-182714},
  doi =		{10.4230/LIPIcs.CCC.2023.1},
  annote =	{Keywords: Factorization norms, randomized communication complexity}
}
Document
The Strength of Equality Oracles in Communication

Authors: Toniann Pitassi, Morgan Shirley, and Adi Shraibman

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
It is well-known that randomized communication protocols are more powerful than deterministic protocols. In particular the Equality function requires Ω(n) deterministic communication complexity but has efficient randomized protocols. Previous work of Chattopadhyay, Lovett and Vinyals shows that randomized communication is strictly stronger than what can be solved by deterministic protocols equipped with an Equality oracle. Despite this separation, we are far from understanding the exact strength of Equality oracles in the context of communication complexity. In this work we focus on nondeterminisic communication equipped with an Equality oracle, which is a subclass of Merlin-Arthur communication. We show that this inclusion is strict by proving that the previously-studied Integer Inner Product function, which can be efficiently computed even with bounded-error randomness, cannot be computed using sublinear communication in the nondeterministic Equality model. To prove this we give a new matrix-theoretic characterization of the nondeterministic Equality model: specifically, there is a tight connection between this model and a covering number based on the blocky matrices of Hambardzumyan, Hatami, and Hatami, as well as a natural variant of the Gamma-2 factorization norm. Similar equivalences are shown for the unambiguous nondeterministic model with Equality oracles. A bonus result arises from these proofs: for the studied communication models, a single Equality oracle call suffices without loss of generality. Our results allow us to prove a separation between deterministic and unambiguous nondeterminism in the presence of Equality oracles. This stands in contrast to the result of Yannakakis which shows that these models are polynomially-related without oracles. We suggest a number of intriguing open questions along this direction of inquiry, as well as others that arise from our work.

Cite as

Toniann Pitassi, Morgan Shirley, and Adi Shraibman. The Strength of Equality Oracles in Communication. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 89:1-89:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{pitassi_et_al:LIPIcs.ITCS.2023.89,
  author =	{Pitassi, Toniann and Shirley, Morgan and Shraibman, Adi},
  title =	{{The Strength of Equality Oracles in Communication}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{89:1--89:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.89},
  URN =		{urn:nbn:de:0030-drops-175927},
  doi =		{10.4230/LIPIcs.ITCS.2023.89},
  annote =	{Keywords: Factorization norm, blocky rank, Merlin-Arthur}
}
Document
Track A: Algorithms, Complexity and Games
Nondeterministic and Randomized Boolean Hierarchies in Communication Complexity

Authors: Toniann Pitassi, Morgan Shirley, and Thomas Watson

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We investigate the power of randomness in two-party communication complexity. In particular, we study the model where the parties can make a constant number of queries to a function with an efficient one-sided-error randomized protocol. The complexity classes defined by this model comprise the Randomized Boolean Hierarchy, which is analogous to the Boolean Hierarchy but defined with one-sided-error randomness instead of nondeterminism. Our techniques connect the Nondeterministic and Randomized Boolean Hierarchies, and we provide a complete picture of the relationships among complexity classes within and across these two hierarchies. In particular, we prove that the Randomized Boolean Hierarchy does not collapse, and we prove a query-to-communication lifting theorem for all levels of the Nondeterministic Boolean Hierarchy and use it to resolve an open problem stated in the paper by Halstenberg and Reischuk (CCC 1988) which initiated the study of this hierarchy.

Cite as

Toniann Pitassi, Morgan Shirley, and Thomas Watson. Nondeterministic and Randomized Boolean Hierarchies in Communication Complexity. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 92:1-92:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{pitassi_et_al:LIPIcs.ICALP.2020.92,
  author =	{Pitassi, Toniann and Shirley, Morgan and Watson, Thomas},
  title =	{{Nondeterministic and Randomized Boolean Hierarchies in Communication Complexity}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{92:1--92:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.92},
  URN =		{urn:nbn:de:0030-drops-124992},
  doi =		{10.4230/LIPIcs.ICALP.2020.92},
  annote =	{Keywords: Boolean hierarchies, lifting theorems, query complexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail