LIPIcs.CCC.2023.1.pdf
- Filesize: 0.77 MB
- 16 pages
In an influential paper, Linial and Shraibman (STOC '07) introduced the factorization norm as a powerful tool for proving lower bounds against randomized and quantum communication complexities. They showed that the logarithm of the approximate γ₂-factorization norm is a lower bound for these parameters and asked whether a stronger lower bound that replaces approximate γ₂ norm with the γ₂ norm holds. We answer the question of Linial and Shraibman in the negative by exhibiting a 2ⁿ×2ⁿ Boolean matrix with γ₂ norm 2^Ω(n) and randomized communication complexity O(log n). As a corollary, we recover the recent result of Chattopadhyay, Lovett, and Vinyals (CCC '19) that deterministic protocols with access to an Equality oracle are exponentially weaker than (one-sided error) randomized protocols. In fact, as a stronger consequence, our result implies an exponential separation between the power of unambiguous nondeterministic protocols with access to Equality oracle and (one-sided error) randomized protocols, which answers a question of Pitassi, Shirley, and Shraibman (ITSC '23). Our result also implies a conjecture of Sherif (Ph.D. thesis) that the γ₂ norm of the Integer Inner Product function (IIP) in dimension 3 or higher is exponential in its input size.
Feedback for Dagstuhl Publishing