Search Results

Documents authored by Sinop, Ali Kemal


Document
Spectrally Robust Graph Isomorphism

Authors: Alexandra Kolla, Ioannis Koutis, Vivek Madan, and Ali Kemal Sinop

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We initiate the study of spectral generalizations of the graph isomorphism problem. b) The Spectral Graph Dominance (SGD) problem: On input of two graphs G and H does there exist a permutation pi such that G preceq pi(H)? c) The Spectrally Robust Graph Isomorphism (kappa-SRGI) problem: On input of two graphs G and H, find the smallest number kappa over all permutations pi such that pi(H) preceq G preceq kappa c pi(H) for some c. SRGI is a natural formulation of the network alignment problem that has various applications, most notably in computational biology. G preceq c H means that for all vectors x we have x^T L_G x <= c x^T L_H x, where L_G is the Laplacian G. We prove NP-hardness for SGD. We also present a kappa^3-approximation algorithm for SRGI for the case when both G and H are bounded-degree trees. The algorithm runs in polynomial time when kappa is a constant.

Cite as

Alexandra Kolla, Ioannis Koutis, Vivek Madan, and Ali Kemal Sinop. Spectrally Robust Graph Isomorphism. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 84:1-84:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{kolla_et_al:LIPIcs.ICALP.2018.84,
  author =	{Kolla, Alexandra and Koutis, Ioannis and Madan, Vivek and Sinop, Ali Kemal},
  title =	{{Spectrally Robust Graph Isomorphism}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{84:1--84:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.84},
  URN =		{urn:nbn:de:0030-drops-90887},
  doi =		{10.4230/LIPIcs.ICALP.2018.84},
  annote =	{Keywords: Network Alignment, Graph Isomorphism, Graph Similarity}
}
Document
The Hardness of Approximation of Euclidean k-Means

Authors: Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
The Euclidean k-means problem is a classical problem that has been extensively studied in the theoretical computer science, machine learning and the computational geometry communities. In this problem, we are given a set of n points in Euclidean space R^d, and the goal is to choose k center points in R^d so that the sum of squared distances of each point to its nearest center is minimized. The best approximation algorithms for this problem include a polynomial time constant factor approximation for general k and a (1+c)-approximation which runs in time poly(n) exp(k/c). At the other extreme, the only known computational complexity result for this problem is NP-hardness [Aloise et al.'09]. The main difficulty in obtaining hardness results stems from the Euclidean nature of the problem, and the fact that any point in R^d can be a potential center. This gap in understanding left open the intriguing possibility that the problem might admit a PTAS for all k, d. In this paper we provide the first hardness of approximation for the Euclidean k-means problem. Concretely, we show that there exists a constant c > 0 such that it is NP-hard to approximate the k-means objective to within a factor of (1+c). We show this via an efficient reduction from the vertex cover problem on triangle-free graphs: given a triangle-free graph, the goal is to choose the fewest number of vertices which are incident on all the edges. Additionally, we give a proof that the current best hardness results for vertex cover can be carried over to triangle-free graphs. To show this we transform G, a known hard vertex cover instance, by taking a graph product with a suitably chosen graph H, and showing that the size of the (normalized) maximum independent set is almost exactly preserved in the product graph using a spectral analysis, which might be of independent interest.

Cite as

Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The Hardness of Approximation of Euclidean k-Means. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 754-767, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{awasthi_et_al:LIPIcs.SOCG.2015.754,
  author =	{Awasthi, Pranjal and Charikar, Moses and Krishnaswamy, Ravishankar and Sinop, Ali Kemal},
  title =	{{The Hardness of Approximation of Euclidean k-Means}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{754--767},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.754},
  URN =		{urn:nbn:de:0030-drops-51178},
  doi =		{10.4230/LIPIcs.SOCG.2015.754},
  annote =	{Keywords: Euclidean k-means, Hardness of Approximation, Vertex Cover}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail