Search Results

Documents authored by Slot, Stijn


Document
Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

Authors: Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We consider the unlabeled motion-planning problem of m unit-disc robots moving in a simple polygonal workspace of n edges. The goal is to find a motion plan that moves the robots to a given set of m target positions. For the unlabeled variant, it does not matter which robot reaches which target position as long as all target positions are occupied in the end. If the workspace has narrow passages such that the robots cannot fit through them, then the free configuration space, representing all possible unobstructed positions of the robots, will consist of multiple connected components. Even if in each component of the free space the number of targets matches the number of start positions, the motion-planning problem does not always have a solution when the robots and their targets are positioned very densely. In this paper, we prove tight bounds on how much separation between start and target positions is necessary to always guarantee a solution. Moreover, we describe an algorithm that always finds a solution in time O(n log n + mn + m²) if the separation bounds are met. Specifically, we prove that the following separation is sufficient: any two start positions are at least distance 4 apart, any two target positions are at least distance 4 apart, and any pair of a start and a target positions is at least distance 3 apart. We further show that when the free space consists of a single connected component, the separation between start and target positions is not necessary.

Cite as

Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{banyassady_et_al:LIPIcs.SoCG.2022.12,
  author =	{Banyassady, Bahareh and de Berg, Mark and Bringmann, Karl and Buchin, Kevin and Fernau, Henning and Halperin, Dan and Kostitsyna, Irina and Okamoto, Yoshio and Slot, Stijn},
  title =	{{Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.12},
  URN =		{urn:nbn:de:0030-drops-160203},
  doi =		{10.4230/LIPIcs.SoCG.2022.12},
  annote =	{Keywords: motion planning, computational geometry, simple polygon}
}
Document
Media Exposition
Designing Art Galleries (Media Exposition)

Authors: Toon van Benthem, Kevin Buchin, Irina Kostitsyna, and Stijn Slot

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We present a method for generating interesting levels based on several NP-hardness reductions for a puzzle game based on the Art Gallery problem.

Cite as

Toon van Benthem, Kevin Buchin, Irina Kostitsyna, and Stijn Slot. Designing Art Galleries (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 80:1-80:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{vanbenthem_et_al:LIPIcs.SoCG.2020.80,
  author =	{van Benthem, Toon and Buchin, Kevin and Kostitsyna, Irina and Slot, Stijn},
  title =	{{Designing Art Galleries}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{80:1--80:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.80},
  URN =		{urn:nbn:de:0030-drops-122382},
  doi =		{10.4230/LIPIcs.SoCG.2020.80},
  annote =	{Keywords: Art Gallery problem, NP-hard, puzzle, level generation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail