Search Results

Documents authored by Soto, José A.


Document
Track A: Algorithms, Complexity and Games
The Minimum Cost Query Problem on Matroids with Uncertainty Areas

Authors: Arturo I. Merino and José A. Soto

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study the minimum weight basis problem on matroid when elements' weights are uncertain. For each element we only know a set of possible values (an uncertainty area) that contains its real weight. In some cases there exist bases that are uniformly optimal, that is, they are minimum weight bases for every possible weight function obeying the uncertainty areas. In other cases, computing such a basis is not possible unless we perform some queries for the exact value of some elements. Our main result is a polynomial time algorithm for the following problem. Given a matroid with uncertainty areas and a query cost function on its elements, find the set of elements of minimum total cost that we need to simultaneously query such that, no matter their revelation, the resulting instance admits a uniformly optimal base. We also provide combinatorial characterizations of all uniformly optimal bases, when one exists; and of all sets of queries that can be performed so that after revealing the corresponding weights the resulting instance admits a uniformly optimal base.

Cite as

Arturo I. Merino and José A. Soto. The Minimum Cost Query Problem on Matroids with Uncertainty Areas. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 83:1-83:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{merino_et_al:LIPIcs.ICALP.2019.83,
  author =	{Merino, Arturo I. and Soto, Jos\'{e} A.},
  title =	{{The Minimum Cost Query Problem on Matroids with Uncertainty Areas}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{83:1--83:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.83},
  URN =		{urn:nbn:de:0030-drops-106592},
  doi =		{10.4230/LIPIcs.ICALP.2019.83},
  annote =	{Keywords: Minimum spanning tree, matroids, uncertainty, queries}
}
Document
Symmetry Exploitation for Online Machine Covering with Bounded Migration

Authors: Waldo Gálvez, José A. Soto, and José Verschae

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
Online models that allow recourse are highly effective in situations where classical models are too pessimistic. One such problem is the online machine covering problem on identical machines. In this setting, jobs arrive one by one and must be assigned to machines with the objective of maximizing the minimum machine load. When a job arrives, we are allowed to reassign some jobs as long as their total size is (at most) proportional to the processing time of the arriving job. The proportionality constant is called the migration factor of the algorithm. By rounding the processing times, which yields useful structural properties for online packing and covering problems, we design first a simple (1.7 + epsilon)-competitive algorithm using a migration factor of O(1/epsilon) which maintains at every arrival a locally optimal solution with respect to the Jump neighborhood. After that, we present as our main contribution a more involved (4/3+epsilon)-competitive algorithm using a migration factor of O~(1/epsilon^3). At every arrival, we run an adaptation of the Largest Processing Time first (LPT) algorithm. Since the new job can cause a complete change of the assignment of smaller jobs in both cases, a low migration factor is achieved by carefully exploiting the highly symmetric structure obtained by the rounding procedure.

Cite as

Waldo Gálvez, José A. Soto, and José Verschae. Symmetry Exploitation for Online Machine Covering with Bounded Migration. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 32:1-32:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{galvez_et_al:LIPIcs.ESA.2018.32,
  author =	{G\'{a}lvez, Waldo and Soto, Jos\'{e} A. and Verschae, Jos\'{e}},
  title =	{{Symmetry Exploitation for Online Machine Covering with Bounded Migration}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{32:1--32:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.32},
  URN =		{urn:nbn:de:0030-drops-94959},
  doi =		{10.4230/LIPIcs.ESA.2018.32},
  annote =	{Keywords: Machine Covering, Bounded Migration, Online, Scheduling, LPT}
}
Document
On Guillotine Cutting Sequences

Authors: Fidaa Abed, Parinya Chalermsook, José Correa, Andreas Karrenbauer, Pablo Pérez-Lantero, José A. Soto, and Andreas Wiese

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
Imagine a wooden plate with a set of non-overlapping geometric objects painted on it. How many of them can a carpenter cut out using a panel saw making guillotine cuts, i.e., only moving forward through the material along a straight line until it is split into two pieces? Already fifteen years ago, Pach and Tardos investigated whether one can always cut out a constant fraction if all objects are axis-parallel rectangles. However, even for the case of axis-parallel squares this question is still open. In this paper, we answer the latter affirmatively. Our result is constructive and holds even in a more general setting where the squares have weights and the goal is to save as much weight as possible. We further show that when solving the more general question for rectangles affirmatively with only axis-parallel cuts, this would yield a combinatorial O(1)-approximation algorithm for the Maximum Independent Set of Rectangles problem, and would thus solve a long-standing open problem. In practical applications, like the mentioned carpentry and many other settings, we can usually place the items freely that we want to cut out, which gives rise to the two-dimensional guillotine knapsack problem: Given a collection of axis-parallel rectangles without presumed coordinates, our goal is to place as many of them as possible in a square-shaped knapsack respecting the constraint that the placed objects can be separated by a sequence of guillotine cuts. Our main result for this problem is a quasi-PTAS, assuming the input data to be quasi-polynomially bounded integers. This factor matches the best known (quasi-polynomial time) result for (non-guillotine) two-dimensional knapsack.

Cite as

Fidaa Abed, Parinya Chalermsook, José Correa, Andreas Karrenbauer, Pablo Pérez-Lantero, José A. Soto, and Andreas Wiese. On Guillotine Cutting Sequences. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 1-19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{abed_et_al:LIPIcs.APPROX-RANDOM.2015.1,
  author =	{Abed, Fidaa and Chalermsook, Parinya and Correa, Jos\'{e} and Karrenbauer, Andreas and P\'{e}rez-Lantero, Pablo and Soto, Jos\'{e} A. and Wiese, Andreas},
  title =	{{On Guillotine Cutting Sequences}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{1--19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.1},
  URN =		{urn:nbn:de:0030-drops-52917},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.1},
  annote =	{Keywords: Guillotine cuts, Rectangles, Squares, Independent Sets, Packing}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail