Search Results

Documents authored by Steiger, Alex


Document
Optimal Motion Planning for Two Square Robots in a Rectilinear Environment

Authors: Pankaj K. Agarwal, Mark de Berg, Benjamin Holmgren, Alex Steiger, and Martijn Struijs

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Let W ⊂ ℝ² be a rectilinear polygonal environment (that is, a rectilinear polygon potentially with holes) with a total of n vertices, and let A,B be two robots, each modeled as an axis-aligned unit square, that can move rectilinearly inside W. The goal is to compute an optimal collision-free motion plan π for A and B between a given pair of source and target configurations. We study two variants of this problem and obtain the following results. - Min-Sum: Here the goal is to compute a motion plan that minimizes the sum of the lengths of the paths of the robots. We present an O(n⁴log n)-time algorithm for computing an optimal solution to the min-sum problem. This is the first polynomial-time algorithm to compute an optimal, collision-free motion of two robots amid obstacles in a planar polygonal environment. - Min-Makespan: Here the robots can move with at most unit speed, and the goal is to compute a motion plan that minimizes the maximum time taken by a robot to reach its target location. We prove that the min-makespan variant is NP-hard.

Cite as

Pankaj K. Agarwal, Mark de Berg, Benjamin Holmgren, Alex Steiger, and Martijn Struijs. Optimal Motion Planning for Two Square Robots in a Rectilinear Environment. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2025.5,
  author =	{Agarwal, Pankaj K. and de Berg, Mark and Holmgren, Benjamin and Steiger, Alex and Struijs, Martijn},
  title =	{{Optimal Motion Planning for Two Square Robots in a Rectilinear Environment}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.5},
  URN =		{urn:nbn:de:0030-drops-231577},
  doi =		{10.4230/LIPIcs.SoCG.2025.5},
  annote =	{Keywords: Computational geometry, motion planning, multiple robots, rectilinear paths}
}
Document
Track A: Algorithms, Complexity and Games
An Output-Sensitive Algorithm for Computing the Union of Cubes and Fat Boxes in 3D

Authors: Pankaj K. Agarwal and Alex Steiger

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Let C be a set of n axis-aligned cubes of arbitrary sizes in ℝ³. Let U be their union, and let κ be the number of vertices on ∂U; κ can vary between O(1) and O(n²). We show that U can be computed in O(n log³ n + κ) time if C is in general position. The algorithm also computes the union of a set of fat boxes (i.e., boxes with bounded aspect ratio) within the same time bound. If the cubes in C are congruent or have bounded depth, the running time improves to O(n log² n), and if both conditions hold, the running time improves to O(n log n).

Cite as

Pankaj K. Agarwal and Alex Steiger. An Output-Sensitive Algorithm for Computing the Union of Cubes and Fat Boxes in 3D. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ICALP.2021.10,
  author =	{Agarwal, Pankaj K. and Steiger, Alex},
  title =	{{An Output-Sensitive Algorithm for Computing the Union of Cubes and Fat Boxes in 3D}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.10},
  URN =		{urn:nbn:de:0030-drops-140790},
  doi =		{10.4230/LIPIcs.ICALP.2021.10},
  annote =	{Keywords: union of cubes, fat boxes, plane-sweep}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail