Search Results

Documents authored by Strelchuk, Sergii


Document
Quantum Catalytic Space

Authors: Harry Buhrman, Marten Folkertsma, Ian Mertz, Florian Speelman, Sergii Strelchuk, Sathyawageeswar Subramanian, and Quinten Tupker

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Space complexity is a key field of study in theoretical computer science. In the quantum setting there are clear motivations to understand the power of space-restricted computation, as qubits are an especially precious and limited resource. Recently, a new branch of space-bounded complexity called catalytic computing has shown that reusing space is a very powerful computational resource, especially for subroutines that incur little to no space overhead. While quantum catalysis in an information theoretic context, and the power of "dirty" qubits for quantum computation, has been studied over the years, these models are generally not suitable for use in quantum space-bounded algorithms, as they either rely on specific catalytic states or destroy the memory being borrowed. We define the notion of catalytic computing in the quantum setting and show a number of initial results about the model. First, we show that quantum catalytic logspace can always be computed quantumly in polynomial time; the classical analogue of this is the largest open question in catalytic computing. This also allows quantum catalytic space to be defined in an equivalent way with respect to circuits instead of Turing machines. We also prove that quantum catalytic logspace can simulate log-depth threshold circuits, a class which is known to contain (and believed to strictly contain) quantum logspace, thus showcasing the power of quantum catalytic space. Finally we show that both unitary quantum catalytic logspace and classical catalytic logspace can be simulated in the one-clean qubit model.

Cite as

Harry Buhrman, Marten Folkertsma, Ian Mertz, Florian Speelman, Sergii Strelchuk, Sathyawageeswar Subramanian, and Quinten Tupker. Quantum Catalytic Space. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 11:1-11:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{buhrman_et_al:LIPIcs.TQC.2025.11,
  author =	{Buhrman, Harry and Folkertsma, Marten and Mertz, Ian and Speelman, Florian and Strelchuk, Sergii and Subramanian, Sathyawageeswar and Tupker, Quinten},
  title =	{{Quantum Catalytic Space}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{11:1--11:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.11},
  URN =		{urn:nbn:de:0030-drops-240606},
  doi =		{10.4230/LIPIcs.TQC.2025.11},
  annote =	{Keywords: quantum computing, quantum complexity, space-bounded algorithms, catalytic computation, one clean qubit}
}
Document
Quantum Capacity Can Be Greater Than Private Information for Arbitrarily Many Uses

Authors: David Elkouss and Sergii Strelchuk

Published in: LIPIcs, Volume 44, 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)


Abstract
The quantum capacity of a quantum channel is always smaller than the capacity of the channel for private communication. However, both quantities are given by the infinite regularization of respectively the coherent and the private information. Here, we construct a family of channels for which the private and coherent information can remain strictly superadditive for unbounded number of uses. We prove this by showing that the coherent information is strictly larger than the private information of a smaller number of uses of the channel. It turns out that even though the quantum capacity is upper bounded by the private capacity, the non-regularized quantities can be interleaved. From an operational point of view, the private capacity can be used for gauging the practical value of quantum channels for secure communication and, consequently, for key distribution. We thus show that in order to evaluate the interest a channel for this task it is necessary to optimize the private information over an unlimited number of uses of the channel.

Cite as

David Elkouss and Sergii Strelchuk. Quantum Capacity Can Be Greater Than Private Information for Arbitrarily Many Uses. In 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 44, pp. 64-72, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{elkouss_et_al:LIPIcs.TQC.2015.64,
  author =	{Elkouss, David and Strelchuk, Sergii},
  title =	{{Quantum Capacity Can Be Greater Than Private Information for Arbitrarily Many Uses}},
  booktitle =	{10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)},
  pages =	{64--72},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-96-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{44},
  editor =	{Beigi, Salman and K\"{o}nig, Robert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2015.64},
  URN =		{urn:nbn:de:0030-drops-55491},
  doi =		{10.4230/LIPIcs.TQC.2015.64},
  annote =	{Keywords: Quantum channels, capacity, private information}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail