Published in: OASIcs, Volume 125, 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)
Swantje Plambeck, Maximilian Schmidt, Audine Subias, Louise Travé-Massuyès, and Goerschwin Fey. Usability of Symbolic Regression for Hybrid System Identification - System Classes and Parameters (Short Paper). In 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024). Open Access Series in Informatics (OASIcs), Volume 125, pp. 30:1-30:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{plambeck_et_al:OASIcs.DX.2024.30, author = {Plambeck, Swantje and Schmidt, Maximilian and Subias, Audine and Trav\'{e}-Massuy\`{e}s, Louise and Fey, Goerschwin}, title = {{Usability of Symbolic Regression for Hybrid System Identification - System Classes and Parameters}}, booktitle = {35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)}, pages = {30:1--30:14}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-356-0}, ISSN = {2190-6807}, year = {2024}, volume = {125}, editor = {Pill, Ingo and Natan, Avraham and Wotawa, Franz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.30}, URN = {urn:nbn:de:0030-drops-221223}, doi = {10.4230/OASIcs.DX.2024.30}, annote = {Keywords: Hybrid Systems, Symbolic Regression, System Identification} }
Feedback for Dagstuhl Publishing