Search Results

Documents authored by Sunny, Anupa


Document
Certificate Games

Authors: Sourav Chakraborty, Anna Gál, Sophie Laplante, Rajat Mittal, and Anupa Sunny

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We introduce and study Certificate Game complexity, a measure of complexity based on the probability of winning a game where two players are given inputs with different function values and are asked to output some index i such that x_i≠ y_i, in a zero-communication setting. We give upper and lower bounds for private coin, public coin, shared entanglement and non-signaling strategies, and give some separations. We show that complexity in the public coin model is upper bounded by Randomized query and Certificate complexity. On the other hand, it is lower bounded by fractional and randomized certificate complexity, making it a good candidate to prove strong lower bounds on randomized query complexity. Complexity in the private coin model is bounded from below by zero-error randomized query complexity. The quantum measure highlights an interesting and surprising difference between classical and quantum query models. Whereas the public coin certificate game complexity is bounded from above by randomized query complexity, the quantum certificate game complexity can be quadratically larger than quantum query complexity. We use non-signaling, a notion from quantum information, to give a lower bound of n on the quantum certificate game complexity of the OR function, whose quantum query complexity is Θ(√n), then go on to show that this "non-signaling bottleneck" applies to all functions with high sensitivity, block sensitivity or fractional block sensitivity. We also consider the single-bit version of certificate games, where the inputs of the two players are restricted to having Hamming distance 1. We prove that the single-bit version of certificate game complexity with shared randomness is equal to sensitivity up to constant factors, thus giving a new characterization of sensitivity. On the other hand, the single-bit version of certificate game complexity with private randomness is equal to λ², where λ is the spectral sensitivity.

Cite as

Sourav Chakraborty, Anna Gál, Sophie Laplante, Rajat Mittal, and Anupa Sunny. Certificate Games. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 32:1-32:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.ITCS.2023.32,
  author =	{Chakraborty, Sourav and G\'{a}l, Anna and Laplante, Sophie and Mittal, Rajat and Sunny, Anupa},
  title =	{{Certificate Games}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{32:1--32:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.32},
  URN =		{urn:nbn:de:0030-drops-175353},
  doi =		{10.4230/LIPIcs.ITCS.2023.32},
  annote =	{Keywords: block sensitivity, boolean function complexity, certificate complexity, query complexity, sensitivity, zero-communication two-player games}
}
Document
Sensitivity Lower Bounds from Linear Dependencies

Authors: Sophie Laplante, Reza Naserasr, and Anupa Sunny

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Recently, using spectral techniques, H. Huang proved that every subgraph of the hypercube of dimension n induced on more than half the vertices has maximum degree at least √n. Combined with some earlier work, this completed a proof of the sensitivity conjecture. In this work we show how to derive a proof of Huang’s result using only linear dependency and independence of vectors associated with the vertices of the hypercube. Our approach leads to several improvements of the result. In particular we prove that in any induced subgraph of H_n with more than half the number of vertices, there are two vertices, one of odd parity and the other of even parity, each with at least n vertices at distance at most 2. As an application we show that for any Boolean function f, the polynomial degree of f is bounded above by s₀(f) s₁(f), a strictly stronger statement which implies the sensitivity conjecture.

Cite as

Sophie Laplante, Reza Naserasr, and Anupa Sunny. Sensitivity Lower Bounds from Linear Dependencies. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 62:1-62:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{laplante_et_al:LIPIcs.MFCS.2020.62,
  author =	{Laplante, Sophie and Naserasr, Reza and Sunny, Anupa},
  title =	{{Sensitivity Lower Bounds from Linear Dependencies}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{62:1--62:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.62},
  URN =		{urn:nbn:de:0030-drops-127320},
  doi =		{10.4230/LIPIcs.MFCS.2020.62},
  annote =	{Keywords: Boolean Functions, Polynomial Degree, Sensitivity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail