Search Results

Documents authored by Sutherland, Chris


Document
Overlapping Qubits

Authors: Rui Chao, Ben W. Reichardt, Chris Sutherland, and Thomas Vidick

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
An ideal system of n qubits has 2^n dimensions. This exponential grants power, but also hinders characterizing the system's state and dynamics. We study a new problem: the qubits in a physical system might not be independent. They can "overlap," in the sense that an operation on one qubit slightly affects the others. We show that allowing for slight overlaps, n qubits can fit in just polynomially many dimensions. (Defined in a natural way, all pairwise overlaps can be <= epsilon in n^{O(1/epsilon^2)} dimensions.) Thus, even before considering issues like noise, a real system of n qubits might inherently lack any potential for exponential power. On the other hand, we also provide an efficient test to certify exponential dimensionality. Unfortunately, the test is sensitive to noise. It is important to devise more robust tests on the arrangements of qubits in quantum devices.

Cite as

Rui Chao, Ben W. Reichardt, Chris Sutherland, and Thomas Vidick. Overlapping Qubits. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chao_et_al:LIPIcs.ITCS.2017.48,
  author =	{Chao, Rui and Reichardt, Ben W. and Sutherland, Chris and Vidick, Thomas},
  title =	{{Overlapping Qubits}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{48:1--48:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.48},
  URN =		{urn:nbn:de:0030-drops-81826},
  doi =		{10.4230/LIPIcs.ITCS.2017.48},
  annote =	{Keywords: Quantum computing, Qubits, Dimension test}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail