Search Results

Documents authored by Swan, Andrew W


Document
Unifying Cubical Models of Univalent Type Theory

Authors: Evan Cavallo, Anders Mörtberg, and Andrew W Swan

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We present a new constructive model of univalent type theory based on cubical sets. Unlike prior work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in Agda that these fibrations are closed under the type formers of cubical type theory and that the model satisfies the univalence axiom. By applying the construction in the presence of diagonal cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we also obtain a Quillen model structure.

Cite as

Evan Cavallo, Anders Mörtberg, and Andrew W Swan. Unifying Cubical Models of Univalent Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.14,
  author =	{Cavallo, Evan and M\"{o}rtberg, Anders and Swan, Andrew W},
  title =	{{Unifying Cubical Models of Univalent Type Theory}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.14},
  URN =		{urn:nbn:de:0030-drops-116578},
  doi =		{10.4230/LIPIcs.CSL.2020.14},
  annote =	{Keywords: Cubical Set Models, Cubical Type Theory, Homotopy Type Theory, Univalent Foundations}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail