Search Results

Documents authored by Szarf, Ariel


Document
APPROX
Maximum Matching Sans Maximal Matching: A New Approach for Finding Maximum Matchings in the Data Stream Model

Authors: Moran Feldman and Ariel Szarf

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science. Despite a significant body of work dedicated to the study of this problem in the data stream model, the state-of-the-art single-pass semi-streaming algorithm for it is still a simple greedy algorithm that computes a maximal matching, and this way obtains 1/2-approximation. Some previous works described two/three-pass algorithms that improve over this approximation ratio by using their second and third passes to improve the above mentioned maximal matching. One contribution of this paper continues this line of work by presenting new three-pass semi-streaming algorithms that work along these lines and obtain improved approximation ratios of 0.6111 and 0.5694 for triangle-free and general graphs, respectively. Unfortunately, a recent work [Christian Konrad and Kheeran K. Naidu, 2021] shows that the strategy of constructing a maximal matching in the first pass and then improving it in further passes has limitations. Additionally, this technique is unlikely to get us closer to single-pass semi-streaming algorithms obtaining a better than 1/2-approximation. Therefore, it is interesting to come up with algorithms that do something else with their first pass (we term such algorithms non-maximal-matching-first algorithms). No such algorithms are currently known (to the best of our knowledge), and the main contribution of this paper is describing such algorithms that obtain approximation ratios of 0.5384 and 0.5555 in two and three passes, respectively, for general graphs (the result for three passes improves over the previous state-of-the-art, but is worse than the result of this paper mentioned in the previous paragraph for general graphs). The improvements obtained by these results are, unfortunately, numerically not very impressive, but the main importance (in our opinion) of these results is in demonstrating the potential of non-maximal-matching-first algorithms.

Cite as

Moran Feldman and Ariel Szarf. Maximum Matching Sans Maximal Matching: A New Approach for Finding Maximum Matchings in the Data Stream Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 33:1-33:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{feldman_et_al:LIPIcs.APPROX/RANDOM.2022.33,
  author =	{Feldman, Moran and Szarf, Ariel},
  title =	{{Maximum Matching Sans Maximal Matching: A New Approach for Finding Maximum Matchings in the Data Stream Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{33:1--33:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.33},
  URN =		{urn:nbn:de:0030-drops-171559},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.33},
  annote =	{Keywords: Maximum matching, semi-streaming algorithms, multi-pass algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail