Search Results

Documents authored by Tao, Runzhou


Document
Symmetric Sparse Boolean Matrix Factorization and Applications

Authors: Sitan Chen, Zhao Song, Runzhou Tao, and Ruizhe Zhang

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
In this work, we study a variant of nonnegative matrix factorization where we wish to find a symmetric factorization of a given input matrix into a sparse, Boolean matrix. Formally speaking, given {𝐌} ∈ {ℤ}^{m× m}, we want to find {𝐖} ∈ {0,1}^{m× r} such that ‖ {𝐌} - {𝐖} {𝐖}^⊤ ‖₀ is minimized among all {𝐖} for which each row is k-sparse. This question turns out to be closely related to a number of questions like recovering a hypergraph from its line graph, as well as reconstruction attacks for private neural network training. As this problem is hard in the worst-case, we study a natural average-case variant that arises in the context of these reconstruction attacks: {𝐌} = {𝐖} {𝐖}^{⊤} for {𝐖} a random Boolean matrix with k-sparse rows, and the goal is to recover {𝐖} up to column permutation. Equivalently, this can be thought of as recovering a uniformly random k-uniform hypergraph from its line graph. Our main result is a polynomial-time algorithm for this problem based on bootstrapping higher-order information about {𝐖} and then decomposing an appropriate tensor. The key ingredient in our analysis, which may be of independent interest, is to show that such a matrix {𝐖} has full column rank with high probability as soon as m = Ω̃(r), which we do using tools from Littlewood-Offord theory and estimates for binary Krawtchouk polynomials.

Cite as

Sitan Chen, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Symmetric Sparse Boolean Matrix Factorization and Applications. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 46:1-46:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2022.46,
  author =	{Chen, Sitan and Song, Zhao and Tao, Runzhou and Zhang, Ruizhe},
  title =	{{Symmetric Sparse Boolean Matrix Factorization and Applications}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{46:1--46:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.46},
  URN =		{urn:nbn:de:0030-drops-156422},
  doi =		{10.4230/LIPIcs.ITCS.2022.46},
  annote =	{Keywords: Matrix factorization, tensors, random matrices, average-case complexity}
}
Document
APPROX
Streaming Hardness of Unique Games

Authors: Venkatesan Guruswami and Runzhou Tao

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
We study the problem of approximating the value of a Unique Game instance in the streaming model. A simple count of the number of constraints divided by p, the alphabet size of the Unique Game, gives a trivial p-approximation that can be computed in O(log n) space. Meanwhile, with high probability, a sample of O~(n) constraints suffices to estimate the optimal value to (1+epsilon) accuracy. We prove that any single-pass streaming algorithm that achieves a (p-epsilon)-approximation requires Omega_epsilon(sqrt n) space. Our proof is via a reduction from lower bounds for a communication problem that is a p-ary variant of the Boolean Hidden Matching problem studied in the literature. Given the utility of Unique Games as a starting point for reduction to other optimization problems, our strong hardness for approximating Unique Games could lead to downstream hardness results for streaming approximability for other CSP-like problems.

Cite as

Venkatesan Guruswami and Runzhou Tao. Streaming Hardness of Unique Games. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 5:1-5:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.APPROX-RANDOM.2019.5,
  author =	{Guruswami, Venkatesan and Tao, Runzhou},
  title =	{{Streaming Hardness of Unique Games}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{5:1--5:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.5},
  URN =		{urn:nbn:de:0030-drops-112209},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.5},
  annote =	{Keywords: Communication complexity, CSP, Fourier Analysis, Lower bounds, Streaming algorithms, Unique Games}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail