Search Results

Documents authored by Umenberger, Jack


Document
Smoothed Analysis of Online Metric Problems

Authors: Christian Coester and Jack Umenberger

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We study three classical online problems - k-server, k-taxi, and chasing size k sets - through a lens of smoothed analysis. Our setting allows request locations to be adversarial up to small perturbations, interpolating between worst-case and average-case models. Specifically, we show that if the metric space is contained in a ball in any normed space and requests are drawn from distributions whose density functions are upper bounded by 1/σ times the uniform density over the ball, then all three problems admit polylog(k/σ)-competitive algorithms. Our approach is simple: it reduces smoothed instances to fully adversarial instances on finite metrics and leverages existing algorithms in a black-box manner. We also provide a lower bound showing that no algorithm can achieve a competitive ratio sub-polylogarithmic in k/σ, matching our upper bounds up to the exponent of the polylogarithm. In contrast, the best known competitive ratios for these problems in the fully adversarial setting are 2k-1, ∞ and Θ(k²), respectively.

Cite as

Christian Coester and Jack Umenberger. Smoothed Analysis of Online Metric Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 115:1-115:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{coester_et_al:LIPIcs.ESA.2025.115,
  author =	{Coester, Christian and Umenberger, Jack},
  title =	{{Smoothed Analysis of Online Metric Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{115:1--115:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.115},
  URN =		{urn:nbn:de:0030-drops-245847},
  doi =		{10.4230/LIPIcs.ESA.2025.115},
  annote =	{Keywords: Online Algorithms, Competitive Analysis, Smoothed Analysis, k-server, k-taxi, Metrical Service Systems}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail