Search Results

Documents authored by Volberg, Alexander


Document
Quantum and Classical Low-Degree Learning via a Dimension-Free Remez Inequality

Authors: Ohad Klein, Joseph Slote, Alexander Volberg, and Haonan Zhang

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Recent efforts in Analysis of Boolean Functions aim to extend core results to new spaces, including to the slice binom([n],k), the hypergrid [K]ⁿ, and noncommutative spaces (matrix algebras). We present here a new way to relate functions on the hypergrid (or products of cyclic groups) to their harmonic extensions over the polytorus. We show the supremum of a function f over products of the cyclic group {exp(2π i k/K)}_{k = 1}^K controls the supremum of f over the entire polytorus ({z ∈ ℂ:|z| = 1}ⁿ), with multiplicative constant C depending on K and deg(f) only. This Remez-type inequality appears to be the first such estimate that is dimension-free (i.e., C does not depend on n). This dimension-free Remez-type inequality removes the main technical barrier to giving 𝒪(log n) sample complexity, polytime algorithms for learning low-degree polynomials on the hypergrid and low-degree observables on level-K qudit systems. In particular, our dimension-free Remez inequality implies new Bohnenblust-Hille-type estimates which are central to the learning algorithms and appear unobtainable via standard techniques. Thus we extend to new spaces a recent line of work [Eskenazis and Ivanisvili, 2022; Huang et al., 2022; Volberg and Zhang, 2023] that gave similarly efficient methods for learning low-degree polynomials on the hypercube and observables on qubits. An additional product of these efforts is a new class of distributions over which arbitrary quantum observables are well-approximated by their low-degree truncations - a phenomenon that greatly extends the reach of low-degree learning in quantum science [Huang et al., 2022].

Cite as

Ohad Klein, Joseph Slote, Alexander Volberg, and Haonan Zhang. Quantum and Classical Low-Degree Learning via a Dimension-Free Remez Inequality. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 69:1-69:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{klein_et_al:LIPIcs.ITCS.2024.69,
  author =	{Klein, Ohad and Slote, Joseph and Volberg, Alexander and Zhang, Haonan},
  title =	{{Quantum and Classical Low-Degree Learning via a Dimension-Free Remez Inequality}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{69:1--69:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.69},
  URN =		{urn:nbn:de:0030-drops-195977},
  doi =		{10.4230/LIPIcs.ITCS.2024.69},
  annote =	{Keywords: Analysis of Boolean Functions, Remez Inequality, Bohnenblust-Hille Inequality, Statistical Learning Theory, Qudits}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail