Search Results

Documents authored by Wang, Shaowen


Document
Short Paper
Impacts of Catchments Derived from Fine-Grained Mobility Data on Spatial Accessibility (Short Paper)

Authors: Alexander Michels, Jinwoo Park, Bo Li, Jeon-Young Kang, and Shaowen Wang

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Spatial accessibility is a powerful tool for understanding how access to important services and resources varies across space. While spatial accessibility methods traditionally rely on origin-destination matrices between centroids of administrative zones, recent work has examined creating polygonal catchments - areas within a travel-time threshold - from point-based fine-grained mobility data. In this paper, we investigate the difference between the convex hull and alpha shape algorithms for determining catchment areas and how this affects the results of spatial accessibility analyses. Our analysis shows that the choice of how we define a catchment produces differences in the measured accessibility which correlate with social vulnerability. These findings highlight the importance of evaluating and communicating minor methodological choices in spatial accessibility analyses.

Cite as

Alexander Michels, Jinwoo Park, Bo Li, Jeon-Young Kang, and Shaowen Wang. Impacts of Catchments Derived from Fine-Grained Mobility Data on Spatial Accessibility (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 52:1-52:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{michels_et_al:LIPIcs.GIScience.2023.52,
  author =	{Michels, Alexander and Park, Jinwoo and Li, Bo and Kang, Jeon-Young and Wang, Shaowen},
  title =	{{Impacts of Catchments Derived from Fine-Grained Mobility Data on Spatial Accessibility}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{52:1--52:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.52},
  URN =		{urn:nbn:de:0030-drops-189470},
  doi =		{10.4230/LIPIcs.GIScience.2023.52},
  annote =	{Keywords: Spatial accessibility, alpha shape, convex hull, cyberGIS, social vulnerability}
}
Document
Outlier Detection and Comparison of Origin-Destination Flows Using Data Depth

Authors: Myeong-Hun Jeong, Junjun Yin, and Shaowen Wang

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
Advances in location-aware technology have resulted in massive trajectory data. Origin-destination (OD) trajectories provide rich information on urban flow and transport demand. This study describes a new method for detecting OD flows outliers and conducting hypothesis testing between two OD flow datasets in terms of the variations of spatial extent, that is, spread. The proposed method is based on data depth, which measures the centrality and outlyingness of a point with respect to a given dataset in R^d. Based on the center-outward ordering property, the proposed method analyzes the underlying characteristics of OD flows, such as location, outlyingness, and spread. The ability of the method to detect OD anomalies is compared with that of the Mahalanobis distance approach, and an F-test is used to verify the difference in scale. Empirical evaluation has demonstrated that our method effectively identifies OD flows outliers in an interactive way. Furthermore, the method can provide new perspectives such as spatial extent by considering the overall structure of data when comparing two different OD flows in terms of scale.

Cite as

Myeong-Hun Jeong, Junjun Yin, and Shaowen Wang. Outlier Detection and Comparison of Origin-Destination Flows Using Data Depth. In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{jeong_et_al:LIPIcs.GISCIENCE.2018.6,
  author =	{Jeong, Myeong-Hun and Yin, Junjun and Wang, Shaowen},
  title =	{{Outlier Detection and Comparison of Origin-Destination Flows Using Data Depth}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.6},
  URN =		{urn:nbn:de:0030-drops-93341},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.6},
  annote =	{Keywords: Movement Analysis, Trajectory Data Mining, Data Depth, Outlier Detection}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail