Search Results

Documents authored by Winslow, Andrew


Document
Optimal Staged Self-Assembly of General Shapes

Authors: Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim Wylie

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We analyze the number of stages, tiles, and bins needed to construct n * n squares and scaled shapes in the staged tile assembly model. In particular, we prove that there exists a staged system with b bins and t tile types assembling an n * n square using O((log n - tb - t log t)/b^2 + log log b/log t) stages and Omega((log n - tb - t log t)/b^2) are necessary for almost all n. For a shape S, we prove O((K(S) - tb - t log t)/b^2 + (log log b)/log t) stages suffice and Omega((K(S) - tb - t log t)/b^2) are necessary for the assembly of a scaled version of S, where K(S) denotes the Kolmogorov complexity of S. Similarly tight bounds are also obtained when more powerful flexible glue functions are permitted. These are the first staged results that hold for all choices of b and t and generalize prior results. The upper bound constructions use a new technique for efficiently converting each both sources of system complexity, namely the tile types and mixing graph, into a "bit string" assembly.

Cite as

Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim Wylie. Optimal Staged Self-Assembly of General Shapes. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{chalk_et_al:LIPIcs.ESA.2016.26,
  author =	{Chalk, Cameron and Martinez, Eric and Schweller, Robert and Vega, Luis and Winslow, Andrew and Wylie, Tim},
  title =	{{Optimal Staged Self-Assembly of General Shapes}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.26},
  URN =		{urn:nbn:de:0030-drops-63776},
  doi =		{10.4230/LIPIcs.ESA.2016.26},
  annote =	{Keywords: Tile self-assembly, 2HAM, aTAM, DNA computing, biocomputing}
}
Document
A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino

Authors: Stefan Langerman and Andrew Winslow

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
A plane tiling consisting of congruent copies of a shape is isohedral provided that for any pair of copies, there exists a symmetry of the tiling mapping one copy to the other. We give a O(n*log^2(n))-time algorithm for deciding if a polyomino with n edges can tile the plane isohedrally. This improves on the O(n^{18})-time algorithm of Keating and Vince and generalizes recent work by Brlek, Provençal, Fédou, and the second author.

Cite as

Stefan Langerman and Andrew Winslow. A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 50:1-50:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{langerman_et_al:LIPIcs.SoCG.2016.50,
  author =	{Langerman, Stefan and Winslow, Andrew},
  title =	{{A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{50:1--50:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.50},
  URN =		{urn:nbn:de:0030-drops-59423},
  doi =		{10.4230/LIPIcs.SoCG.2016.50},
  annote =	{Keywords: Plane tiling, polyomino, boundary word, isohedral}
}
Document
Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM

Authors: Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz, Robert T. Schweller, Scott M Summers, and Andrew Winslow

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
We study the difference between the standard seeded model (aTAM) of tile self-assembly, and the "seedless" two-handed model of tile self-assembly (2HAM). Most of our results suggest that the two-handed model is more powerful. In particular, we show how to simulate any seeded system with a two-handed system that is essentially just a constant factor larger. We exhibit finite shapes with a busy-beaver separation in the number of distinct tiles required by seeded versus two-handed, and exhibit an infinite shape that can be constructed two-handed but not seeded. Finally, we show that verifying whether a given system uniquely assembles a desired supertile is co-NP-complete in the two-handed model, while it was known to be polynomially solvable in the seeded model.

Cite as

Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz, Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 172-184, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{cannon_et_al:LIPIcs.STACS.2013.172,
  author =	{Cannon, Sarah and Demaine, Erik D. and Demaine, Martin L. and Eisenstat, Sarah and Patitz, Matthew J. and Schweller, Robert T. and Summers, Scott M and Winslow, Andrew},
  title =	{{Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{172--184},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.172},
  URN =		{urn:nbn:de:0030-drops-39321},
  doi =		{10.4230/LIPIcs.STACS.2013.172},
  annote =	{Keywords: abstract tile assembly model, hierarchical tile assembly model, two-handed tile assembly model, algorithmic self-assembly, DNA computing, biocomputing}
}
Document
Algorithms for Designing Pop-Up Cards

Authors: Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, André Schulz, Diane L. Souvaine, Giovanni Viglietta, and Andrew Winslow

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
We prove that every simple polygon can be made as a (2D) pop-up card/book that opens to any desired angle between 0 and 360°. More precisely, given a simple polygon attached to the two walls of the open pop-up, our polynomial-time algorithm subdivides the polygon into a single-degree-of-freedom linkage structure, such that closing the pop-up flattens the linkage without collision. This result solves an open problem of Hara and Sugihara from 2009. We also show how to obtain a more efficient construction for the special case of orthogonal polygons, and how to make 3D orthogonal polyhedra, from pop-ups that open to 90°, 180°, 270°, or 360°.

Cite as

Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, André Schulz, Diane L. Souvaine, Giovanni Viglietta, and Andrew Winslow. Algorithms for Designing Pop-Up Cards. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 269-280, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{abel_et_al:LIPIcs.STACS.2013.269,
  author =	{Abel, Zachary and Demaine, Erik D. and Demaine, Martin L. and Eisenstat, Sarah and Lubiw, Anna and Schulz, Andr\'{e} and Souvaine, Diane L. and Viglietta, Giovanni and Winslow, Andrew},
  title =	{{Algorithms for Designing Pop-Up Cards}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{269--280},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.269},
  URN =		{urn:nbn:de:0030-drops-39407},
  doi =		{10.4230/LIPIcs.STACS.2013.269},
  annote =	{Keywords: geometric folding, linkages, universality}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail