Search Results

Documents authored by Wright, John


Document
Beating the Random Assignment on Constraint Satisfaction Problems of Bounded Degree

Authors: Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev, David Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and John Wright

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
We show that for any odd k and any instance I of the max-kXOR constraint satisfaction problem, there is an efficient algorithm that finds an assignment satisfying at least a 1/2 + Omega(1/sqrt(D)) fraction of I's constraints, where D is a bound on the number of constraints that each variable occurs in. This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and Gutmann (2014), which gave a quantum algorithm to find an assignment satisfying a 1/2 Omega(D^{-3/4}) fraction of the equations. For arbitrary constraint satisfaction problems, we give a similar result for "triangle-free" instances; i.e., an efficient algorithm that finds an assignment satisfying at least a mu + Omega(1/sqrt(degree)) fraction of constraints, where mu is the fraction that would be satisfied by a uniformly random assignment.

Cite as

Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev, David Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and John Wright. Beating the Random Assignment on Constraint Satisfaction Problems of Bounded Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 110-123, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{barak_et_al:LIPIcs.APPROX-RANDOM.2015.110,
  author =	{Barak, Boaz and Moitra, Ankur and O’Donnell, Ryan and Raghavendra, Prasad and Regev, Oded and Steurer, David and Trevisan, Luca and Vijayaraghavan, Aravindan and Witmer, David and Wright, John},
  title =	{{Beating the Random Assignment on Constraint Satisfaction Problems of Bounded Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{110--123},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.110},
  URN =		{urn:nbn:de:0030-drops-52981},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.110},
  annote =	{Keywords: constraint satisfaction problems, bounded degree, advantage over random}
}
Document
Improved NP-Inapproximability for 2-Variable Linear Equations

Authors: Johan Håstad, Sangxia Huang, Rajsekar Manokaran, Ryan O’Donnell, and John Wright

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
An instance of the 2-Lin(2) problem is a system of equations of the form "x_i + x_j = b (mod 2)". Given such a system in which it's possible to satisfy all but an epsilon fraction of the equations, we show it is NP-hard to satisfy all but a C*epsilon fraction of the equations, for any C < 11/8 = 1.375 (and any 0 < epsilon <= 1/8). The previous best result, standing for over 15 years, had 5/4 in place of 11/8. Our result provides the best known NP-hardness even for the Unique Games problem, and it also holds for the special case of Max-Cut. The precise factor 11/8 is unlikely to be best possible; we also give a conjecture concerning analysis of Boolean functions which, if true, would yield a larger hardness factor of 3/2. Our proof is by a modified gadget reduction from a pairwise-independent predicate. We also show an inherent limitation to this type of gadget reduction. In particular, any such reduction can never establish a hardness factor C greater than 2.54. Previously, no such limitation on gadget reductions was known.

Cite as

Johan Håstad, Sangxia Huang, Rajsekar Manokaran, Ryan O’Donnell, and John Wright. Improved NP-Inapproximability for 2-Variable Linear Equations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 341-360, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{hastad_et_al:LIPIcs.APPROX-RANDOM.2015.341,
  author =	{H\r{a}stad, Johan and Huang, Sangxia and Manokaran, Rajsekar and O’Donnell, Ryan and Wright, John},
  title =	{{Improved NP-Inapproximability for 2-Variable Linear Equations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{341--360},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.341},
  URN =		{urn:nbn:de:0030-drops-53112},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.341},
  annote =	{Keywords: approximability, unique games, linear equation, gadget, linear programming}
}
Document
Adaptivity Helps for Testing Juntas

Authors: Rocco A. Servedio, Li-Yang Tan, and John Wright

Published in: LIPIcs, Volume 33, 30th Conference on Computational Complexity (CCC 2015)


Abstract
We give a new lower bound on the query complexity of any non-adaptive algorithm for testing whether an unknown Boolean function is a k-junta versus epsilon-far from every k-junta. Our lower bound is that any non-adaptive algorithm must make Omega(( k * log*(k)) / ( epsilon^c * log(log(k)/epsilon^c))) queries for this testing problem, where c is any absolute constant <1. For suitable values of epsilon this is asymptotically larger than the O(k * log(k) + k/epsilon) query complexity of the best known adaptive algorithm [Blais,STOC'09] for testing juntas, and thus the new lower bound shows that adaptive algorithms are more powerful than non-adaptive algorithms for the junta testing problem.

Cite as

Rocco A. Servedio, Li-Yang Tan, and John Wright. Adaptivity Helps for Testing Juntas. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 264-279, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{servedio_et_al:LIPIcs.CCC.2015.264,
  author =	{Servedio, Rocco A. and Tan, Li-Yang and Wright, John},
  title =	{{Adaptivity Helps for Testing Juntas}},
  booktitle =	{30th Conference on Computational Complexity (CCC 2015)},
  pages =	{264--279},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-81-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{33},
  editor =	{Zuckerman, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.264},
  URN =		{urn:nbn:de:0030-drops-50663},
  doi =		{10.4230/LIPIcs.CCC.2015.264},
  annote =	{Keywords: Property testing, juntas, adaptivity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail