Search Results

Documents authored by Xie, Han


Found 2 Possible Name Variants:

Xie, Han

Document
Detecting Transcriptomic Structural Variants in Heterogeneous Contexts via the Multiple Compatible Arrangements Problem

Authors: Yutong Qiu, Cong Ma, Han Xie, and Carl Kingsford

Published in: LIPIcs, Volume 143, 19th International Workshop on Algorithms in Bioinformatics (WABI 2019)


Abstract
Transcriptomic structural variants (TSVs) - large-scale transcriptome sequence change due to structural variation - are common, especially in cancer. Detecting TSVs is a challenging computational problem. Sample heterogeneity (including differences between alleles in diploid organisms) is a critical confounding factor when identifying TSVs. To improve TSV detection in heterogeneous RNA-seq samples, we introduce the Multiple Compatible Arrangement Problem (MCAP), which seeks k genome rearrangements to maximize the number of reads that are concordant with at least one rearrangement. This directly models the situation of a heterogeneous or diploid sample. We prove that MCAP is NP-hard and provide a 1/4-approximation algorithm for k=1 and a 3/4-approximation algorithm for the diploid case (k=2) assuming an oracle for k=1. Combining these, we obtain a 3/16-approximation algorithm for MCAP when k=2 (without an oracle). We also present an integer linear programming formulation for general k. We characterize the graph structures that require k>1 to satisfy all edges and show such structures are prevalent in cancer samples. We evaluate our algorithms on 381 TCGA samples and 2 cancer cell lines and show improved performance compared to the state-of-the-art TSV-calling tool, SQUID.

Cite as

Yutong Qiu, Cong Ma, Han Xie, and Carl Kingsford. Detecting Transcriptomic Structural Variants in Heterogeneous Contexts via the Multiple Compatible Arrangements Problem. In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 143, pp. 18:1-18:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{qiu_et_al:LIPIcs.WABI.2019.18,
  author =	{Qiu, Yutong and Ma, Cong and Xie, Han and Kingsford, Carl},
  title =	{{Detecting Transcriptomic Structural Variants in Heterogeneous Contexts via the Multiple Compatible Arrangements Problem}},
  booktitle =	{19th International Workshop on Algorithms in Bioinformatics (WABI 2019)},
  pages =	{18:1--18:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-123-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{143},
  editor =	{Huber, Katharina T. and Gusfield, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2019.18},
  URN =		{urn:nbn:de:0030-drops-110483},
  doi =		{10.4230/LIPIcs.WABI.2019.18},
  annote =	{Keywords: transcriptomic structural variation, integer linear programming, heterogeneity}
}

Xie, Yuanhang

Document
Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs

Authors: Ran Duan, Kaifeng Lyu, and Yuanhang Xie

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
In a directed graph G=(V,E) with a capacity on every edge, a bottleneck path (or widest path) between two vertices is a path maximizing the minimum capacity of edges in the path. For the single-source all-destination version of this problem in directed graphs, the previous best algorithm runs in O(m+n log n) (m=|E| and n=|V|) time, by Dijkstra search with Fibonacci heap [Fredman and Tarjan 1987]. We improve this time bound to O(m sqrt{log n}+sqrt{mn log n log log n}), which is O(n sqrt{log n log log n}) when m=O(n), thus it is the first algorithm which breaks the time bound of classic Fibonacci heap when m=o(n sqrt{log n}). It is a Las-Vegas randomized approach. By contrast, the s-t bottleneck path has algorithm with running time O(m beta(m,n)) [Chechik et al. 2016], where beta(m,n)=min{k >= 1: log^{(k)}n <= m/n}.

Cite as

Ran Duan, Kaifeng Lyu, and Yuanhang Xie. Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 43:1-43:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{duan_et_al:LIPIcs.ICALP.2018.43,
  author =	{Duan, Ran and Lyu, Kaifeng and Xie, Yuanhang},
  title =	{{Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{43:1--43:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.43},
  URN =		{urn:nbn:de:0030-drops-90475},
  doi =		{10.4230/LIPIcs.ICALP.2018.43},
  annote =	{Keywords: Graph Algorithm, Bottleneck Path, Combinatorial Optimization}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail